Introduction

- Stroke is a leading cause of disability and fourth cause of death for American adults. A stroke can result in balance dysfunction, gait deficits, and loss of postural control in individuals post-stroke.
- Common abnormal muscle activation patterns include hip extension/adduction/knee extension or hip flexion/adduction/knee flexion, making it challenging for individuals post-stroke to complete a step-up task.

Purpose

To quantify hip angles and force generation as a measure of muscle activation in controls and individuals post stroke during a step up task.

Hypothesis

Individuals post-stroke would generate an increased activation of paretic (P) hip musculature as the trailing limb during the step up task and a decreased activation when acting as the leading limb.

Methods

- Individuals post-stroke were recruited from the Clinical Neuroscience Research Registry. They were all community ambulators, able to step up and down a step up to 4" in height, and diagnosed with a unilateral brain lesion (>1 year). Age matched controls were also recruited.
- Demographic information: the Activity Balance Confidence (ABC) Scale, LE Fugl-Meyer, and the Step Test are shown in Table 1 (N=10; 5 controls and 5 individuals post-stroke).
- Experimental Procedure: Subjects were tested without an assistive device but with an Ankle Foot Orthosis (AFO) if applicable and were placed in an overhead safety harness (see Figure 1).

Results

Table 1. Subject Demographics & Outcome Measures

<table>
<thead>
<tr>
<th></th>
<th>Stroke (Mean ± SD)</th>
<th>Control (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td>♂=2; ♀=3</td>
<td>♂=3; ♀=2</td>
</tr>
<tr>
<td>AGE (yrs)</td>
<td>59.0 (7.6)</td>
<td>60.4 (5.0)</td>
</tr>
<tr>
<td>ABC (%)</td>
<td>84.3 (13.9)</td>
<td>98.0 (3.3)</td>
</tr>
<tr>
<td>LE Fugl-Meyer Score</td>
<td>20.4 (5.0)</td>
<td>33.8 (4.0)</td>
</tr>
<tr>
<td>Step Test (# steps/ 15 sec)</td>
<td>NP 11.5 (4.7)</td>
<td>"D 19.0 (3.5)</td>
</tr>
<tr>
<td></td>
<td>P 8.1 (4.1)</td>
<td>ND 17.3 (3.7)</td>
</tr>
</tbody>
</table>

*D/ND= Dominant & Non-Dominant

Figures 1a & 1b (top right): Activation of hip musculature in the leading limb was studied in P and NP limbs of individuals post stroke, as well as D and ND limbs in controls. Similarities in magnitude were observed for both hip angle changes and hip torque generation. However, there seems to be a timing difference as hip musculature activated later in the step up cycle when compared to NP or controls. No differences in hip angle or torque generation were found within controls.

Figures 3a & 3b (bottom right): Activation of hip musculature in the trailing limb was studied in P and NP limbs of individuals post stroke, as well as D and ND limbs in controls. The trailing limb is loaded (weight bearing) in the first 40-50% of the step up cycle. Similarities in magnitude were observed for hip angle changes across all subjects. However, there seems to be a difference in magnitude of force generation at the hip when the trailing limb is loaded in both P and NP limbs compared to both limbs in controls.

Conclusions

- Differences in the timing of hip muscle activation suggest an early compensatory mechanism of the NP leading limb during a step cycle in individuals post-stroke. Similarly, it suggests a delay in the P leading limb.
- Hip extension torques seemed increased in P and NP over controls on the trailing limb when it was heavily loaded, which is consistent with the lower limb extension pattern characteristic of individuals post stroke, supporting our hypothesis.
- Limitations: Data presented here is part of a larger study; EMG data, hip kinematics, kinetics, torques generated at the knee and ankle were collected and are currently under review for both leading and side step tasks.

Clinical Relevance

Identifying deficits in hip force generation and timing of muscle activation that limit the ability of individuals post-stroke to successfully navigate stairs can help guide innovative physical therapy interventions and more effective cueing approaches.

References

