Outcome Measures in Neurological Physical Therapy Practice: Part II. A Patient-Centered Process

Jane E. Sullivan, PT, DHS, A. Williams Andrews, PT, EdD, NCS, Desiree Lanzino, PT, PhD, Aimee Peron, PT, DPT, NCS, and Kirsten A. Potter, PT, DPT, MS, NCS

Physical therapists working in neurological practice must make choices about which standardized outcome measures are most appropriate for each patient. Significant time constraints in the clinic limit the number of measures that one can reasonably administer. Therapists must choose measures that will provide results that guide the selection of appropriate interventions and are likely to show clinically meaningful change. Therefore, therapists must be able to compare the merits of available measures to identify those that are most relevant for each patient and setting. This article describes a process for selecting outcome measures and illustrates the use of that process with a patient who has had a stroke. The link between selecting objective outcome measures and tracking patient progress is emphasized. Comparisons are made between two motor function measures (the Fugl-Meyer Assessment [FMA] of Physical Performance vs the Stroke Rehabilitation Assessment of Movement), and two balance measures (Berg Balance Scale vs the Activities-specific Balance Confidence Scale). The use of objective outcome measures allows therapists to quantify information that previously had been described in subjective terms. This allows the tracking of progress, and the comparison of effectiveness and costs across interventions, settings, providers, and patient characteristics.

Key words: examination, outcome measures therapy, stroke

INTRODUCTION

Physical therapists (PTs) continually compare tests and measures to choose those most appropriate for each patient. The term outcome measure (OM) is often used to describe these tests since they are frequently used to determine whether there has been a change in patient status or outcome. Physical therapists also use measurement tools to diagnose or formulate a prognosis about a patient’s future status. In this article, the term outcome measure will be used broadly—to describe those tools that are used to assess patient status, as well as tools that serve diagnostic or predictive purposes. Outcome measures help to guide the selection of appropriate interventions. For example, if a patient scores low on the Berg Balance Scale (BBS), interventions that target postural control would be important to include in the plan of care. The complexity and variability of patients seen in neurological physical therapy practice make selection of OMs challenging. In addition, time constraints in the clinical setting limit the number of OMs that one can reasonably administer.

Part I of this article series, “Outcome Measures in Neurological Clinical Practice: Part I. Making Sound Decisions,”1 also in this journal issue, explores multiple factors involved in OM selection, including measurement psychometrics, measurement purpose, and clinical utility. The steps in selecting OMs are introduced in that article (see Figure 1, Potter et al1).

This article further explores the process for OM selection, and illustrates the application of that process for a patient with a diagnosis of stroke. A fully developed OM selection process is schematically represented in Figure 1. At the core of the process and represented in the center of the figure are the psychometric properties of the measure(s) under consideration. The key psychometric characteristics to examine before selecting an OM are that it:

- is appropriate to examine the desired constructs → Validity
- can be administered with minimal error → Reliability
- will help to determine if intervention produces a change in the patient’s status → Responsiveness

Health Condition/Referral Question

The first step in the process (illustrated in Figure 1) is to gather information about a patient’s health condition or reason for referral. This information prompts the therapist to consider the body structure/function issues common in that health condition. Knowledge of the health condition, combined with experience treating patients with that condition, allows a therapist to anticipate possible activity limitations and participation restrictions. A review of the medical record provides valuable
preliminary information to help guide selection of OMs. In inpatient settings, nursing notes about the patient’s activity level and assistance required for bed positioning and transfers may prompt the inclusion of specific activity-level measures. Combining information on the patient’s health condition, medical record, and nursing notes allows the therapist to develop a tentative list of OMs prior to the therapist’s initial evaluation of the patient. The list often includes measures that are specific to the patient’s medical diagnosis or condition. Disease-specific measures may be particularly appropriate because they contain items designed to capture issues unique to individuals with that health condition. For example, stroke-specific OMs may include items about selective movement. Items about rigidity and tremor may be included in a Parkinson’s disease–specific measure. Referral information may prompt the therapist to include measures, such as measures of balance for a patient who has been referred because of falls, that capture other constructs of interest. Each subsequent step of the examination process serves to tailor the list of OMs to a patient’s unique circumstances and concerns.

Clinical Utility and Facility-Specific Issues
The next step in the process involves consideration of the clinical setting and facility-specific requirements and resources. Factors unique to each setting, including equipment and space available, as well as the time allotted for patient examination, affect the choice of measures. Facilities may require the use of specific OMs, like the Functional Independence Measure (FIM)3 in inpatient rehabilitation, or the Minimum Data Set4 in skilled nursing facilities. The choice of OMs occurs within the context of these resources and requirements.

Observation
An initial observation of the patient is the next step in the process. The therapist observes the patient performing spontaneous movements and considers whether the movement is consistent with expectations given the health condition or reason for referral. Observations of posture and movement quality, excursion, and speed help the therapist generate hypotheses about the underlying causes of the activity limitations and participation restrictions. Comparing these hypotheses with the initial list of OMs leads the therapist to include additional OMs and/or reaffirm the appropriateness of the initial list. The potential list is further narrowed because OMs that may have either a ceiling or floor effect are ruled out. Floor and ceiling effects are indicative of failures of responsiveness at the 2 ends of the measurement scale: floor, minimum end, and ceiling, maximum end. For example, if the patient is having difficulty moving in bed, an OM that captures advanced balance activities, such as the HiMat,2 may be associated with a floor effect, and therefore would be inappropriate for this patient.

Patient History and Goals
The therapist then explores the patient’s history and identifies his or her concerns and goals. This provides information about the patient’s past and current health situation, including medical and social history, and environment. Knowing the context in which the patient wishes to function, and his or her available resources and limitations, further helps to refine the potential list of OMs.
Outcome Measures in Neurological Clinical Practice

Figure 2. Outcome Measure considerations for J.W. given his health condition—stroke.

J.W. has a history of recent stroke. The therapist should consider potential limitations in:

- Activity - difficulty with basic mobility, transitions, arm function, locomotion
- Body function & structure - cognition, communication, movement selectivity, muscle tone, and sensation
- Participation - difficulty carrying out life roles

Psychometrics
- Validity
- Reliability
- Responsiveness

There are numerous stroke-specific OMs, including:
- Body function & structure - STREAM, Fugl-Meyer, RASP
- Activity - STREAM, Barthel Index
- Participation - SIS, SA-SIP

Generic measures may also be appropriate.

Abbreviations: STREAM, Stroke Rehabilitation Assessment of Movement; RASP, Rivermead Assessment of Somatosensory Performance; ARAT, Action Research Arm Test; MAL, Motor Activity Log; WFMT, Wolf Motor Function Test; SIS, Stroke Impact Scale; SA-SIP, Stroke-adapted Sickness Impact Scale.

Systems Review
The systems review follows and leads to the final OM selection. The systems review begins when the therapist first observes a patient, noting posture, movement, function, and so on. It continues with a more detailed review of the body systems. The Guide to Physical Therapist Practice provides a comprehensive outline of this process. Anticipating the focus of treatment allows the therapist to choose OMs that will evaluate the success of those interventions. Following the examination, during evaluation, the therapist considers the OM findings and confirms or modifies initial hypotheses, leading to the development of the PT diagnosis, prognosis, and plan of care.

PATIENT CASE
Consider how this process helps guide the selection of OMs for J.W., a 73-year-old man having a diagnosis of a left cerebral vascular accident 1 week before being admitted to an inpatient rehabilitation unit. The first step in selecting OMs begins when the referral is received (Figure 1). Knowledge that J.W. had a stroke prompts the hypothesis of potential limitations at several levels of the International Classification of Functioning, Disability, and Health (ICF). At the activity level, J.W. may have difficulty with bed mobility, transitions, arm function, and/or locomotion. At the body function/structure level, he may have limitations in the areas of cognition, communication, movement selectivity, muscle tone, and/or sensation. Therefore, OMs that capture these activity and body function/structure constructs should be considered.

J.W. may also experience participation-level challenges such as limitations in being able to fully carry out family and employment roles. A participation measure, such as the Stroke Impact Scale, might be appropriate if the patient has had the opportunity to experience the impact of the health condition in community living. Participation measures typically ask a patient for a "self-report" of their perceptions, for example, fear of falling or satisfaction with life roles. Because J.W. has been in the hospital since his stroke, this type of measure may not be appropriate at this point in the rehabilitation process.

J.W.’s diagnosis of stroke prompts the therapist to consider stroke-specific OMs. Stroke-specific measures are available to examine the patient’s function at each level of the ICF. An advantage of these measures is that they include items that examine many of the symptoms common with stroke, such as abnormal selectivity, spasticity, sensory loss, and cognitive change. Generic measures that target areas of interest such as balance and walking ability may also be included. Preliminary OM considerations for J.W. at this point in the process are illustrated in Figure 2.

The resources and requirements specific to the facility in which J.W. is being treated, including time available for the initial examination, equipment and space resources, and facility-specific OM requirements, are illustrated in Figure 3.

Armed with an awareness of the resources and requirements and a preliminary list of OMs, the therapist meets J.W. in his hospital room. J.W. responds to a knock on the door by saying, “Come in.” Using his left hand, he uses the bed controls to move to a sitting position. When he reaches his left hand to...
Figure 3. Setting-specific issues that the therapist must consider in planning J.W.’s examination.

- 40 minutes available for initial exam
- Initial note must be entered in documentation system by day's end
- Equipment available includes: bed, chair, W/C, canes, quad canes, walkers
- Parallel bars and mat tables available
- The Functional Independence Measure is required

Figure 4. The initial observation and therapist’s underlying hypotheses regarding the patient’s movement problems.

- No right-sided movement or automatic postural corrections observed.
- Hypotheses include weakness, abnormal selectivity, sensory/ perceptual loss.
- The therapist predicts that J.W. will have difficulty with higher level activities such as transfers and gait.

Abbreviation: OMs, Outcome Measures; STREAM, Stroke Rehabilitation Assessment of Movement.

greet the therapist, J.W. falls slightly to the right. He is able to state his name, the name of the facility, and the reason he was hospitalized. The initial observation and therapist’s underlying hypotheses regarding the patient’s movement problems are illustrated in Figure 4.

During the history, J.W. reports that he lives with his daughter in a second floor walk-up apartment. He works part-time driving a boat. Prior to his stroke, J.W. was independent in all functional mobility and activities of daily living. He describes his health as “pretty good” before his stroke. J.W.’s
medical history is significant for atrial fibrillation, hypertension, and hypercholesterolemia. His goals are to return home and to resume his premorbid life roles.

The systems review follows the history (Table 1). Each of the positive findings obtained during the systems review is compared with the initial hypotheses regarding body structure/function impairments, activity limitations, and participation restrictions resulting in a final list of constructs to examine. The findings also help to narrow the focus of the examination and eliminate those OMs that would result in ceiling or floor effects.

OUTCOME MEASURE SELECTION

The proposed process of selecting OMs can result in numerous possible OMs at each of the ICF levels. It is inefficient and impractical to administer multiple OMs that examine the same construct. To illustrate how a therapist might choose between different measurement tools, 2 motor function measures, the Stroke Rehabilitation Assessment of Movement (STREAM) and the FMA of sensorimotor function, and 2 balance measures, the Berg Balance Scale (BBS) and the Activities-specific Balance Confidence Scale (ABC) will be considered. Comparing and contrasting these measures in the context of J.W.'s needs and goals helps to identify the best OM to select to examine each construct.

Information about the psychometrics of the FMA and STREAM is presented in Tables 2 to 4. The concepts of reliability, validity, and responsiveness are addressed at the center of the OM selection process. An OM's responsiveness and predictive validity are arguably the 2 most important characteristics to be considered when selecting among different tools. An OM that is responsive will allow the therapist to monitor change in a patient’s status. Predictive validity will help the therapist to formulate a prognosis and make discharge recommendations. Numerous studies indicate that both the STREAM and FMA can be reliably administered to J.W. and studies on the validity of these measures is similarly supported. Concurrent validity for the STREAM and FMA has been established by

Table 1. Information from J.W.'s Systems Review

<table>
<thead>
<tr>
<th>Cardiopulmonary</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting HR</td>
<td>72 bpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting BP</td>
<td>138/84 mm Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting RR</td>
<td>20/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting O₂ saturation</td>
<td>98% on room air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edema</td>
<td>Mild edema in R ankle and wrist</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Musculoskeletal				
Gross symmetry	Depressed R shoulder and trunk flexed to R			
Gross ROM	LUE and LE WFL; RUE and LE impaired			
Gross strength	LUE and LE WFL; RUE and LE impaired			
Height/weight Integumentary	5’10”, 175 lb			
Skin color/pliability	Skin intact; no abnormalities of color			

Neuromuscular				
Balance	Requires cues and supervision to maintain unsupported static sitting; unable to maintain unsupported standing; able to stand using a small base quad cane with assistance			
Gait	Able to walk with small base quad cane and minimal assistance for 10’ with gait deviations present in stance and swing			
Locomotion	Independent with wheelchair propulsion on level surfaces using L UE and LE transfers			
Transfers/transitions	Assistance required for bed mobility and transfers			
Motor function	Unable to perform movements in R extremities			
Sensory function	Impaired light touch R extremities			
Other				
Communication	Able to speak clearly			
Orientation	Alert and oriented 4<x			
Behavioral responses	Appropriate to situation			
Learning barriers	None identified			
Educational needs	Education about disease process, home safety, and fall risk			
Learning preferences	Visual and reading			

Abbreviations: bpm, beats per minute; L, left; LE, lower extremity; R, right; ROM, range of motion; UE, upper extremity; WFL, within functional limits; WNL, within normal limits.
comparisons with other measures of the same construct. Predictive validity information may help the therapist set goals related to motor capacity and functional activities, such as locomotion, as well as shape discharge recommendations.

J.W. is being seen in an inpatient rehabilitation setting. A primary role of the PT in this setting is to make discharge placement recommendations. The STREAM score is predictive of discharge destination (e.g., patients scoring < 63/100 on the total STREAM have 0% probability of being discharged to home). This information can assist the PT in making appropriate, evidence-based recommendations. The STREAM and FMA have been shown to be responsive to changes in motor function following stroke. While the FMA can be used to classify patients according to motor function severity, this information may be less useful in assisting with clinical decision making pertaining to discharge destination. Rather, this classification may be more useful to researchers wishing to stratify their subjects according to severity. Both the STREAM and FMA have published minimal detectable change (MDC) values, but only the STREAM has published minimal clinically important difference (MCID) values. The MDC and MCID represent 2 different aspects of responsiveness, both of which are important in clinical practice.

Another element of responsiveness is the consideration of floor and ceiling effects. Choosing OMs in which J.W. scores at neither the minimum nor the maximum of the scale allows for optimal monitoring of his progress. Studies suggest that both floor and ceiling effects may be seen with the STREAM and FMA, with someone like J.W., who has an acute stroke. However, initial observation of J.W. will allow the therapist to make a general prediction about where his scores might fall on these measures. Although there is evidence of excellent psychometric data on both measures, the availability of MCID data offers an advantage in selecting the STREAM to provide more complete information about J.W.’s change or response to intervention.

As disease-specific OMs, both the FMA and the STREAM capture body function/structure constructs of interest following stroke, such as selective extremity movement. Both OMs have fairly good clinical utility. The equipment needed to perform the tests can be found in most clinics and is available in the facility where J.W. is being seen. Scoring
for these OMs is on a 3-point ordinal scale. There are, however, differences between the measures. While the STREAM scoring system captures the concepts of movement excursion and quality (1a-c scores), total scores do not reflect this concept since all scores of 1 (a, b, or c) are tabulated as “1.” The FMA items examine selective extremity movements; it also includes items on range of motion, pain, sensation, balance, and reflexes. The STREAM includes a gross mobility subscale composed of 10 mobility items assessing various aspects of bed mobility, transitions, and gait. The FIM,3 a tool that is composed of 10 mobility items assessing various aspects of bed mobility, transitions, and gait. The FIM,3 a tool that is composed of 10 mobility items assessing various aspects of bed mobility, transitions, and gait. The quality of motor function is examined although not reflected in total score. The maximum score = 70 points (UE motor function = 20; LE motor function = 20; basic mobility = 30)

The psychometric properties of the 2 balance measures, the ABC and BBS, are presented in Tables 6 to 8. The ABC is a self-report measure, where the BBS is a performance-based tool. Both the BBS and the ABC were developed as generic measures; however, excellent reliability has been reported for each measure when used following stroke.10,28,29 The validity of both measures is similarly supported.24,29,31-39 Concurrent validity for the BBS has been established by comparisons with other measures of balance.24,28,30-38 Information on predictive validity is extremely helpful as it may contribute to the development of a prognosis about J.W.’s functional activities as well as discharge status.32-38 The BBS has been studied in stroke across acuity levels,30,32,35,36 while most studies of the ABC have involved stroke subjects in the chronic stage of recovery. Finally, the BBS has been shown to be responsive following stroke.18,24,40-43

Another element of responsiveness is the consideration of floor and ceiling effects. One study suggests that both floor and ceiling effects may be seen with the BBS in acute stroke.24 No studies have examined the ABC in acute stroke and therefore the presence of floor or ceiling effects is unknown.

<table>
<thead>
<tr>
<th>Table 5. Clinical Utility Comparison of the STREAM and FMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument components and scoring</td>
</tr>
<tr>
<td>Body function/structure level → UE and LE motor function</td>
</tr>
<tr>
<td>Activity level → Basic mobility</td>
</tr>
<tr>
<td>30 items in 3 areas: UE motor function, LE motor function, basic mobility. Each item is scored on a 3-point ordinal scale for motor function or a 4-point ordinal scale for mobility. The quality of motor function is examined although not reflected in total score.</td>
</tr>
<tr>
<td>The maximum score = 70 points (UE motor function = 20; LE motor function = 20; basic mobility = 30)</td>
</tr>
<tr>
<td>Equipment required</td>
</tr>
<tr>
<td>Support surface (eg, mat or bed)</td>
</tr>
<tr>
<td>Stop watch</td>
</tr>
<tr>
<td>Sturdy stool</td>
</tr>
<tr>
<td>Stairs with railing</td>
</tr>
<tr>
<td>Administration time</td>
</tr>
<tr>
<td>15-20 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6. Reliability of the Berg Balance Scale and Activities-specific Balance Confidence Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berg Balance Scale</td>
</tr>
<tr>
<td>Test-retest reliability: Excellent in patients with stroke,20,28</td>
</tr>
<tr>
<td>Activities-specific Balance</td>
</tr>
<tr>
<td>Test-retest reliability: Excellent in individuals with stroke who live in the community23,29</td>
</tr>
</tbody>
</table>

Abbreviations: FMA, Fugl-Meyer Assessment; LE, lower extremity; ROM, range of motion; STREAM, Stroke Rehabilitation Assessment of Movement; UE, upper extremity.
In summary, the therapist’s initial observations of J.W. led to hypotheses about underlying issues with motor function, balance, and difficulty with basic and instrumental activities of daily living. These hypotheses suggested initial inclusion of the STREAM and BBS. The psychometrics and clinical utility of both OMs support their selection. However, given the absence of observable movement in J.W.’s right arm and loss of balance in sitting, there may be concerns about floor effects on both the BBS and the upper extremity subscale of the STREAM. Yet, J.W. has several positive indicators including his relatively healthy premorbid status, recent onset of stroke, the ability to communicate his needs and goals, as well as some active movement of his right extremities that suggest that he will improve with rehabilitation. Thus, the selection of these measures seems appropriate. Furthermore, since both the STREAM and BBS are organized by position (supine, sitting, standing, and walking), the tests can be efficiently administered.

J.W. is anxious to return to his premorbid status as independent in daily activities. Right-sided movement and balance will contribute to achieving these goals. In the final step of the selection process, the systems review confirmed that J.W. has hemiparesis and requires assistance with transitions from supine to sitting to standing as well as gait. The choice of the STREAM and BBS will provide quantitative information on these issues that can be used to plan and evaluate the success of intervention strategies. Responsiveness data on these measures allow the therapist to conclude that these measures will capture meaningful changes during intervention.

DISCUSSION

The process presented in this article expands on the steps for OM selection outlined in “Outcome Measures in Neurological Physical Therapy Practice: Part I. Making Sound Decisions,” and describes a comprehensive method for optimal OM choice. A step-by-step guide considering the critical elements related to the patient, therapist, facility, and available OMs is included. The challenge is to reconcile OM choice with the realities of the clinical environment.

One response to this challenge is the concept of “core sets” of OMs, which are batteries of OMs recommended for specific health conditions. Typically, core sets are developed by panels of experts using a process similar to that described in this article. An example of core set development is the recent effort by the American Physical Therapy Association—Neurology Section StrokEDGE Taskforce, which developed recommendations for the use of OMs following stroke. Consistent use of these core sets of recommended test batteries has multiple advantages including the ability to make comparison of treatment outcomes across facilities, clinicians, and patient characteristics. Perhaps most importantly, routine data collection using common metrics will facilitate the creation of a larger data set upon which to base clinical decisions and contribute to the evidence for best clinical practices. The use of these core sets of OMs does not preclude the use of additional measures that the therapist may find desirable, but will facilitate the collection of a uniform set of data.

Unfortunately, expert panel development of core sets is in its infancy. Using the process described in this article, individual therapists and clinical facilities have the opportunity to tailor test batteries for their settings and help to move forward the effort to develop core sets. Starting with patient populations most frequently treated in their settings, therapists can use resources such as in-services, journal clubs, and student projects to build their OM batteries. Numerous excellent Web sites are available with information about the psychometric properties and clinical utility of OMs used with several neurological populations (see Appendix, Supplemental Digital Content 1, for a list of these Web sites, http://links.lww.com/JNPT/A10).

However, until such time as there are core sets of OMs that are appropriate for the majority of patients seen in neurological PT practice, the process described in this article is designed to equip therapists to make optimal OM choices on a patient-specific basis.

CONCLUSIONS

Physical therapists have made strides in using standardized OMs to assess body structure/function, activity, and participation from the days where examination was documented primarily with subjective, narrative descriptors such as “poor balance, slow gait speed, and synergistic movement.” The use of objective OMs allows therapists to quantify what was previously described only in subjective terms. This allows PTs

Table 7. Validity of the Berg Balance Scale and Activities-specific Balance Confidence Scale

<table>
<thead>
<tr>
<th>Berg Balance Scale</th>
<th>Activities-specific Balance Confidence Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent validity: Poststroke BBS scores have excellent correlations with the balance subscale of the FMA and Postural Assessment Scale for Stroke Patients, and adequate association with dynamic Balance Master measures, and sitting section of the Motor Assessment Scale and Rivermead Mobility Index.</td>
<td>In stroke survivors, the ABC has good internal consistency. Predictive validity: In community dwelling stroke survivors, ABC scores were associated with walking independence, use of an assistive device, and depression. (P \leq 0.05). An improvement on the ABC was predictive of physical function and health, and perceived health status. (P \leq 0.05).</td>
</tr>
<tr>
<td>Predictive validity: BBS scores are associated with length of hospital stay and discharge destination.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ABC, Activities-specific Balance Confidence Scale; BBS, Berg Balance Scale.
Table 8. Responsiveness of the Berg Balance Scale and Activities-specific Balance Confidence Scale

<table>
<thead>
<tr>
<th>Instrument components and scoring</th>
<th>Berg Balance Scale</th>
<th>Activities-specific Balance Confidence Scale</th>
</tr>
</thead>
</table>
| Responsiveness | The BBS was moderately responsive in detecting change in acute to subacute stroke, with decreasing effect as time since onset increased.
In acute to subacute stroke, an overall large effect size was reported for the BBS.
In patients with severe stroke, the BBS was the second most responsive measure of 5 measures tested (5- and 10-m walks, Barthel Index, STREAM, and Timed Up and Go). The 5-m walk was the most responsive.
In acute stroke, the BBS was sensitive to change and demonstrated large effect sizes.
The MDC of the BBS in acute stroke was reported to be 5-7 points.
In chronic stroke, ABC Scale and Stroke Impact Scale-16 were most effective to identify individuals with a history of multiple falls.
Responsiveness of the ABC has been less frequently studied in stroke; however, the ABC has been found to be responsive in community dwelling seniors.
| No published data are available. |
| Ceiling/floor effects | The BBS has a significant floor effect in patients 14 d after stroke onset. The BBS also had a significant ceiling effect at 90 and 180 d after stroke onset for those with higher-level function.
The ABC has a significant floor effect in patients 14 d after stroke onset for those with higher-level function.
| No published data are available. |

Abbreviations: ABC, Activities-specific Balance Confidence Scale; BBS, Berg Balance Scale; STREAM, Stroke Rehabilitation Assessment of Movement.

Table 9. Clinical Utility of the Berg Balance Scale and Activities-specific Balance Confidence Scale

<table>
<thead>
<tr>
<th>Measure</th>
<th>Berg Balance Scale</th>
<th>Activities-specific Balance Confidence Scale</th>
</tr>
</thead>
</table>
| Instrument components and scoring| Activity level → tests balance in sitting and standing
Each item is scored 0 (cannot perform) to 4 (normal performance)
The total score ranges from 0 to 56 | Activity/participation levels → tests balance self-efficacy
16-item questionnaire rating balance confidence performing a variety of in home and community-based functional activities
Each item is rated on a 0%-100% scale of confidence.
The final score is the average of the item scores and ranges from 0% to 100%.
| Questionnaire |
| Equipment required | Stopwatch
Ruler
2 standard height chairs (1 with, 1 w/o armrests)
Footstool
Object to pick up off the floor | |
| Administration time | 15-20 min
5-10 min |

to track progress and compare effectiveness and costs across interventions, settings, and providers, while considering patient characteristics such as severity, acuity, and lesion type or location. Comprehensive assessment across all components of the ICF model, including personal factors, the environment, and the patient’s participation in life roles, enhances the focus on the patient’s perspectives. Considerable information is available about what constructs are captured by specific measures, how the measures perform over time, and how scores can be used to predict change and plan care. In the future, consistent use of standardized OMs by therapists and collection of data across patients and settings can inform best clinical practice and the development of clinical prediction rules. Ultimately, consistent use of a core set of standardized OMs will allow therapists to determine, on a patient/situation basis, the optimal interventions needed to achieve the best possible outcomes.

REFERENCES

