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Abstract

Paraformaldehyde (PFA) is the most commonly used fixative for
immunostaining of cells, but has been associated with various
problems, ranging from loss of antigenicity to changes in morphol-
ogy during fixation. We show here that the small dialdehyde
glyoxal can successfully replace PFA. Despite being less toxic than
PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has
not yet been systematically tried in modern fluorescence micro-
scopy. Here, we tested and optimized glyoxal fixation and surpris-
ingly found it to be more efficient than PFA-based protocols.
Glyoxal acted faster than PFA, cross-linked proteins more effec-
tively, and improved the preservation of cellular morphology. We
validated glyoxal fixation in multiple laboratories against different
PFA-based protocols and confirmed that it enabled better
immunostainings for a majority of the targets. Our data therefore
support that glyoxal can be a valuable alternative to PFA for
immunostaining.
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Introduction

The 4% paraformaldehyde (PFA) solution has been a standard fixa-

tive for immunostaining and fluorescence microscopy, for several

decades. Nevertheless, the literature contains numerous reports that

PFA causes morphological changes, loss of epitopes, or mislocaliza-

tion of target proteins and that it fixes the samples slowly and incom-

pletely (see, e.g., Melan, 1994; Tanaka et al, 2010; Schnell et al,

2012). Many other fixatives have been introduced to alleviate these

problems. Among them, glutaraldehyde is probably the most

commonly used, since it fixes the samples faster and more completely

than PFA (Smith & Reese, 1980). Mixtures of PFA and glutaraldehyde

result in accurate fixation and reduce the lateral mobility of molecules

(Tanaka et al, 2010), presumably by increasing the level of protein

1 Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
2 Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
3 International Max Planck Research School Molecular Biology, Göttingen, Germany
4 MIT Media Lab
5 Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh, UK
6 Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
7 Department of Neural Systems, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
8 Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, Göttingen, Germany
9 German Center for Cardiovascular Research (DZHK) Site Göttingen

10 Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
11 Max-Planck-Institute for Experimental Medicine, Auditory Neuroscience Group, Göttingen, Germany
12 Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of

Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
13 Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
14 Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
15 Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
16 Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
17 Departments of Brain and Cognitive Science and Biological Engineering, MIT Media Lab and McGovern Institute, Cambridge, MA, USA
18 Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
19 Max Planck Research Unit for Neurogenetics, Frankfurt am Main, Germany

*Corresponding author. Tel: +49 551 395911; E-mail: srizzol@gwdg.de
†These authors contributed equally to this work
‡Present address: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands

ª 2017 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal Vol 37 | No 1 | 2018 139

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 17, 2025 from
 IP 165.124.15.187.

http://orcid.org/0000-0003-2492-1317
http://orcid.org/0000-0003-2492-1317
http://orcid.org/0000-0003-2492-1317
http://orcid.org/0000-0003-4432-2733
http://orcid.org/0000-0003-4432-2733
http://orcid.org/0000-0003-4432-2733
http://orcid.org/0000-0001-7145-0533
http://orcid.org/0000-0001-7145-0533
http://orcid.org/0000-0001-7145-0533
http://orcid.org/0000-0003-1679-1727
http://orcid.org/0000-0003-1679-1727
http://orcid.org/0000-0003-1679-1727
http://orcid.org/0000-0002-1667-7839
http://orcid.org/0000-0002-1667-7839
http://orcid.org/0000-0002-1667-7839
http://crossmark.crossref.org/dialog/?doi=10.15252%2Fembj.201695709&domain=pdf&date_stamp=2017-11-16


cross-linking. However, this fixative mixture also reduces the effi-

ciency of immunostainings, by blocking the antibody access to

epitopes, or by causing particular epitopes to unfold (Farr & Nakane,

1981). Alcohol-based fixation, such as treatments with ice-cold

methanol (Tanaka et al, 2010), results in stable fixation for a sub-

population of cellular structures (such as microtubules), but leads to

poor morphology preservation and to a loss of membranes and

cytosolic proteins. Overall, the improvements in fixation induced by

glutaraldehyde or methanol do not compensate for their shortcom-

ings, thus in most cases leaving PFA as the current fixative of choice.

A superior alternative to PFA is needed, especially since artifacts

that were negligible in conventional microscopy are now rendered

visible by the recent progress in super-resolution microscopy (nano-

scopy; Eggeling et al, 2015). To find a fixative that maintains high-

quality immunostainings while alleviating PFA problems, we have

tested several compounds. We searched for commercially available

molecules, which could be readily used by the imaging community.

These included different combinations of PFA and glutaraldehyde,

picric acid (Hopwood, 1985), and di-imido-esters (Woodruff &

Rasmussen, 1979), which, however, were not better than PFA in

immunostaining experiments. We have also investigated different

aldehydes. We avoided highly toxic compounds such as acrolein,

which would not be easy to use in biology laboratories, and we also

avoided large aldehydes (more than 4–5 carbon atoms), whose fixa-

tive properties are expected to mimic those of glutaraldehyde. The

small dialdehyde glyoxal fits these two criteria, since it has a low

toxicity (as already noted in the 1940s, Wicks & Suntzeff, 1943) and

contains only two carbon atoms. Glyoxal is used, at low

concentrations, in glycation and metabolism studies (Boucher et al,

2015), which ensures that it is commercially available. It can be

used as a fixative and has even been once described, in 1963, to

provide better morphology preservation to formaldehyde (Sabatini

et al, 1963). It is almost unknown in fluorescence experiments. We

were able to find one publication, from 1975 (Swaab et al, 1975), in

which glyoxal was used in immunofluorescence on brain samples,

albeit followed by sample freezing, and by procedures that are not

compatible with modern, high-quality microscopy. We could also

find a few publications on histological stains using glyoxal (e.g.,

Umlas & Tulecke, 2004; Paavilainen et al, 2010), which further

encouraged us to test this compound.

We tested glyoxal thoroughly, in preparations ranging from cell-

free cytosol to tissues, and by methods spanning from SDS–PAGE to

electron microscopy and super-resolution fluorescence microscopy.

We found that glyoxal penetrated cells far more rapidly than PFA

and cross-linked proteins and nucleic acids more strongly, leading to

a more accurate preservation of cellular morphology. Despite the

stronger fixation, glyoxal did not cause a reduction of antibody bind-

ing to the samples. On the contrary, the resulting images were typi-

cally brighter than those obtained after PFA fixation. The initial

optimization work was performed in one laboratory (Rizzoli, Univer-

sity Medical Center Göttingen, Germany), and the results were inde-

pendently tested in 11 additional laboratories/teams: Boyden (MIT

Media Lab and McGovern Institute, Massachusetts, USA), Duncan

(Heriot-Watt University, Edinburgh, UK), Hell (Max-Planck-Institute

for Biophysical Chemistry, Göttingen, Germany), Lauterbach (Max-

Planck-Institute for Brain Research, Frankfurt am Main, Germany),
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Figure 1. Comparison of cell penetration by PFA and glyoxal.

A Speed of propidium iodide (PI) penetration into fibroblasts during 60 min of fixation with either 4% PFA or 3% glyoxal. N = 3 independent experiments. Glyoxal
fixation enables PI to penetrate far more rapidly into the cells.

B Speed of FM 1-43 penetration in similar experiments. The arrowhead points to one example of ongoing endocytosis during PFA fixation. N = 3–4 independent
experiments. The general pattern of FM 1-43 entry was similar to that of propidium iodide. Only the first 10 min are shown, to enable an optimal observation of the
kinetics of the first stages of FM 1-43 entry. The results parallel those obtained with PI: faster penetration during glyoxal fixation.

Data information: Scale bar = 40 lm; **P < 0.01 (two-sided Student’s t-test).

The EMBO Journal Vol 37 | No 1 | 2018 ª 2017 The Authors

The EMBO Journal Glyoxal as an alternative to PFA in immunostaining Katharina N Richter et al

140

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 17, 2025 from
 IP 165.124.15.187.



Lehnart (University Medical Center Göttingen, Germany), Moser

(University Medical Center Göttingen, Germany), Outeiro (Univer-

sity Medical Center Göttingen, Germany), Rehling (University Medi-

cal Center Göttingen, Germany), Schwappach (University Medical

Center Göttingen, Germany), Testa (KTH Royal Institute of Technol-

ogy, Stockholm, Sweden), and Zapiec (Max Planck Research Unit for

Neurogenetics, Frankfurt am Main, Germany). We conclude that the

immunostainings performed after glyoxal fixation were superior for

the majority of the samples and targets, with only a minority (~10%)

of the targets being less well preserved and/or revealed.

Results

Glyoxal preserves the cellular morphology more accurately than
PFA and fixes proteins and RNAs more strongly

To determine the optimal conditions of glyoxal fixation, we tested its

action at different pH values (Appendix Table S1). We found that

glyoxal requires an acidic pH, roughly between 4 and 5, despite one

previous study that suggests that it may also fix samples at a neutral

pH (Sabatini et al, 1963). In addition, we found that the morphology

of the samples was much improved upon addition of a low-to-

medium concentration of alcohol (ethanol, 10–20%), which may act

as an accelerator in the fixation reactions. Removing the ethanol, or

adjusting the pH above or below the 4–5 range, resulted in poor

sample morphology (Appendix Table S1). pH values of 4 or 5

provided similar results for most of our experiments (results obtained

at pH 5 are shown in all figures, unless noted otherwise) and

provided better morphology preservation for cultured neurons than

PFA. We tested PFA at various pH values (4, 5, and 7), with or with-

out ethanol, at room temperature or at 37°C (Appendix Table S1),

without finding a condition where the morphology of the PFA-fixed

samples consistently bettered that of glyoxal-fixed samples.

We then proceeded to compare PFA and glyoxal fixation

quantitatively. We first tested the speed with which these fixative

solutions penetrate the cell membrane, by monitoring the

fluorescence of propidium iodide, a fluorogenic probe that binds

nucleic acids, and cannot enter living cells (Davey & Kell, 1996).

Paraformaldehyde fixation allowed propidium iodide entry into

cultured cells only after ~40 min, while glyoxal was substantially

faster (Fig 1A). The same was observed using the membrane-

impermeant styryl dye FM 1-43 (Betz et al, 1992): Glyoxal
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Figure 2. A comparison of morphological changes taking place during
fixation with PFA or glyoxal.

The changes were visualized by DIC images taken at 5-min intervals during
fixation. The graph shows the correlation of each image to the first frame.
N = 50 (PFA) and 54 (glyoxal) cellular regions analyzed, from three independent
experiments (mean � SEM). The higher correlation value indicates that glyoxal
preserves the initial cell morphology with higher accuracy than PFA. Scale
bar = 20 lm; **P < 0.01 (two-sided Student’s t-test).
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Figure 3. Comparison of protein and RNA fixation by PFA and glyoxal.

A SDS–PAGE gel showing rat brain cytoplasm incubated for 60 min with
different fixatives. The graph shows the summed intensity of the bands in
each lane. Fixed proteins either no longer run into the gel or form only
smears. To compare the efficiency of fixation, the bands that survive
fixation were summed and were expressed as % of an unfixed control. The
intensity of PFA-fixed samples was significantly higher than that of glyoxal-
fixed samples (N = 5 independent experiments; one-way ANOVA with post
hoc Tukey test). Glut = 0.2% glutaraldehyde.

B Staining of nucleic acids after fixation. The propidium iodide signal in
fibroblasts was significantly higher for samples fixed with glyoxal pH 4
(N = 6–8). To test whether the fixed nucleic acids were still available for
specific detection, we performed FISH for GAPDH in cultured neurons, using
a standard protocol provided by the company Affymetrix. The fluorescence
signal of the samples fixed with glyoxal (pH 4) was significantly higher
than for PFA-fixed samples (N = 5–6; two-sided Student’s t-test).

Data information: The graphs show mean values, and error bars represent
standard error of the mean. Scale bar = 10 lm; *P < 0.05, **P < 0.01.
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fixation enabled significant FM 1-43 penetration within 1–2 min

(Fig 1B). The difference in membrane penetration is probably due

to the ethanol present in the glyoxal fixative, since the addition

of ethanol to the PFA solution enhances its penetration into cells

in a similar fashion (Appendix Fig S1), albeit it did not improve

immunostainings with PFA (Appendix Fig S1; we would like to

point out that low pH values, 4 and 5, also failed to improve

PFA immunostainings, as shown in the same Appendix figure). In

the same experiments, FM 1-43 addition enabled us to visualize

endocytotic events that took place during PFA fixation. Such

events could be observed in every fixed cell (Fig 1B) and indi-

cated that the cells were still active during PFA fixation, from the

point of view of membrane trafficking. No such events could be

detected during glyoxal fixation.

The hypothesis that cells were still partially active during PFA

fixation, and less so in glyoxal fixation, was also confirmed by

other experiments. First, we tested whether transferrin, which is

readily endocytosed by a clathrin-mediated pathway, through the

involvement of the transferrin receptor, is internalized during fix-

ation. We applied fluorescently conjugated transferrin onto cells

during fixation with glyoxal or PFA (Appendix Fig S2). We found

that it was mainly fixed onto the plasma membrane by glyoxal,

but that it was present both in the cells and on the membrane

during PFA fixation (Appendix Fig S2). Second, we tested

whether the acidic lumen of the lysosome was maintained after

fixation, by applying the probe LysoTracker (Appendix Fig S3).

Substantial LysoTracker labeling was observed after PFA fixation,

but not after glyoxal fixation. Both of these experiments, there-

fore, indicate that glyoxal fixation stops cellular functions more

efficiently than PFA.

The higher speed of membrane penetration seen with glyoxal

was coupled to a better preservation of the general cell morphology,

as observed by imaging cells during fixation (Fig 2). Paraformalde-

hyde fixation was associated with the formation of membrane blebs

and vacuoles, with organelle movement, and with a general change

in the cell morphology (Fig 2). Glyoxal fixation appeared to modify

the cell morphology far less. This impression was confirmed by

calculating the correlation coefficient between the initial cell images

and images acquired at 5-min intervals during fixation (Fig 2). To

obtain a similar view at the level of single organelles, we imaged the

movement of endosomes labeled with fluorescently conjugated

transferrin or cholera toxin. As for the general cell morphology,
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Figure 4. STED imaging of primary hippocampal neurons fixed with either PFA or glyoxal.

Strong differences in labeling patterns can be observed. The images are brighter and less spotty for the glyoxal-fixed samples. Structures such as filaments or organelles are
more easily detected. Quantification of the fluorescence signal (fold over background) shows that 16 out of 20 stainings are significantly brighter in glyoxal-fixed samples
compared to the PFA-fixed samples. N = 35–132 objects (mean � SEM). Scale bar = 6 lm for b-actin and a-tubulin and 3 lm for the other proteins. **P < 0.01,
***P < 0.001 (two-sided Student’s t-test for PSD95, Wilcoxon rank-sum test for all other proteins).

The EMBO Journal Vol 37 | No 1 | 2018 ª 2017 The Authors

The EMBO Journal Glyoxal as an alternative to PFA in immunostaining Katharina N Richter et al

142

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 17, 2025 from
 IP 165.124.15.187.



glyoxal reduced the organelle movement more than PFA

(Appendix Fig S4).

We also monitored the morphology of mitochondria, which

are known to become fragile during fixation. We visualized mito-

chondria in living cells, by tagging them with a GFP-linked

reporter (TOMM70, Appendix Fig S5), and imaged them again

after fixation. Glyoxal preserved mitochondria at least as well as

PFA. Moreover, ethanol addition to the PFA solutions worsened

the preservation of mitochondria morphology, which suggests that

ethanol does not improve PFA fixation, although it enhances its

membrane penetration (Appendix Fig S5). To test this issue

further, we analyzed the correlation between the pre- and post-

fixation images for fluorescent protein chimeras of a mitochondria

reporter (TOMM70), a Golgi apparatus reporter (GalNacT2), a

plasma membrane reporter (SNAP25), a cytoskeleton reporter

(tubulin), and a vesicular reporter (synaptophysin). The correla-

tions were similar among the two fixatives for TOMM70,

GalNacT2, tubulin, and SNAP25. However, the pre- and post-fixa-

tion correlations in glyoxal fixed samples were higher for synap-

tophysin (Appendix Fig S6), which marks the most mobile

elements we investigated in this experiment (vesicles).

We then tested the protein cross-linking capacity of the dif-

ferent fixatives, by monitoring the proportion of the proteins that

remained unfixed. We incubated brain cytosol samples with dif-

ferent fixatives for 60 min and followed this by running the

samples on polyacrylamide gels (Fig 3A, Appendix Fig S7).

Paraformaldehyde, with or without ethanol addition, left ~40% of

the proteins unaffected (unfixed). Glyoxal (both pH 4 and 5)

reduced this unfixed pool to ~20%. Shorter fixation times reduced
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Figure 5. Comparison of immunostaining NUP160 after fixation with
either PFA or glyoxal.

HeLa cells were stained for the nucleoporin complex protein NUP160 after
fixation with either PFA, glyoxal pH 4 or glyoxal pH 5. Fluorescence intensities
(fold over background) were compared and are shown in the graph. The
quantification of fluorescence signals shows that glyoxal pH 4 fixation allows for
significantly brighter stainings. N = 73–156 cells per condition analyzed
(mean � SEM). Scale bar = 10 lm. ***P < 0.001 (Wilcoxon rank-sum test).
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Figure 6. Comparison of immunostained AtT20 cells after fixation with either PFA or glyoxal.

AtT20 cells stained for the SNARE proteins syntaxin 1 and SNAP25 and the autophagy marker LC3B were compared with regard to the fluorescence intensity (fold over
background) of the stainings. Quantification of the intensity shows that glyoxal fixation allows for significantly brighter stainings of the membrane SNARE proteins. LC3B
staining is brighter in PFA-fixed cells. N = 9–20 cells per condition (mean � SEM). Scale bar = 5 lm. *P < 0.05, ***P < 0.001 (two-sided Student’s t-test).
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Figure 7. Comparison of immunostained primary hippocampal neurons in STED resolution.

A Primary hippocampal neurons were stained for actin and ankyrin G. A comparison between PFA- and glyoxal-fixed samples shows that actin staining with phalloidin
works as least as well in both, showing the prominent actin rings. Ankyrin G staining is brighter in PFA-fixed cells.

B Primary hippocampal neurons were stained for pan-Nav and Kv7.2. Both stainings seem to work at least as well for glyoxal-fixed neurons as for PFA-fixed neurons.
Staining of K-channels shows a slightly more regular pattern in glyoxal-fixed neurons.

C Primary hippocampal neurons were stained for neurofilament L and beta II spectrin. While the spectrin staining seems to be equally well in both fixation conditions,
neurofilament staining is brighter in glyoxal-fixed cells.

D Growth cones of hippocampal neurons were stained for actin and bIII-tubulin after either glyoxal or PFA + glutaraldehyde fixation. The latter is a standard fixation
used for the co-labeling of tubulin and actin and is a stronger fixation than normal PFA fixation, which is incompatible with many organelle immunostainings (unlike
glyoxal fixation). The filopodia and lamellipodia of the growth cones seem to be well stained for the samples fixed with glyoxal, whereas the samples fixed with PFA
and glutaraldehyde seem to have lost some of the finer actin structures. Tubulin seems to be a bit better stained in samples fixed with PFA and glutaraldehyde.

Data information: Scale bars = 1 lm.
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Figure 10. Comparison of immunostained mouse inner hair cells after fixation with either PFA or glyoxal.

Acutely dissected organs of Corti were fixed in the respective fixative and immunostained for inner hair cell proteins and synaptic proteins. The quantification of fluorescence
intensity for each staining shows a significant increase in signal-to-noise ratio for three target proteins (CtBP2, calretinin, and Homer 1) fixed with glyoxal. None of the
stained proteins shows a significant decrease in fluorescence after glyoxal fixation. Representative images show maximum intensity projections from z-stacks of inner hair
cell ribbon synapses. N = 5 independent stainings from two animals per condition (PSD95, CtBP2, otoferlin, calretinin) and 10–15 images per condition (CaV1.3 and Homer 1)
(mean � SEM). Scale bar = 2 lm. **P < 0.01, ***P < 0.001 (two-sided Student’s t-test for CtBP2, otoferlin, calretinin and Homer1, Wilcoxon rank-sum test for PSD95 and
CaV1.3).
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Figure 8. Comparison of immunostained sepia fin after fixation with either PFA or glyoxal.

Sepia fin was fixed with the respective fixative and stained for the neuropeptide FMRFamide. A clear change inmorphology can be observed between samples fixed with PFA
and samples fixed with glyoxal. The former appear broken and swollen, while the glyoxal-fixed ones appear complete. The effect is presumably due to the different speed of
penetration into tissue and/or fixation. Scale bar = 5 lm.
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Figure 9. Comparison of immunostained ventricular myocytes fixed 10 min with either PFA or glyoxal.

Freshly isolated murine ventricular myocytes were either fixed with 4% PFA or 3% glyoxal and immunostained for caveolin-3 or ryanodine receptor type 2. Quantification of
the fluorescence intensity of the stainings shows significantly brighter stainings for glyoxal-fixedmyocytes. The graph showsmean values, and error bars represent standard
deviations. N = 10 (RyR2) and 12 (Cav3) myocytes per condition. Scale bar = 2 lm. ***P < 0.001 (Wilcoxon rank-sum test).
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the amount of fixed proteins for all fixation conditions

(Appendix Fig S7). Glyoxal, both at pH 4 or at pH 5, fixed more

proteins than PFA, PFA and ethanol or PFA at low pH, at all time

points (Appendix Fig S7).

The stronger fixation by glyoxal also applied for RNA molecules,

albeit only at pH 4, as observed by staining cells with propidium

iodide after fixation (Fig 3B). To test whether the glyoxal-fixed RNA

molecules could still be detected by specific labeling, we performed

fluorescence in situ hybridization (FISH) for a target that is often used

as a standard in such experiments, glyceraldehyde 3-phosphate dehy-

drogenase (GAPDH). As for the propidium iodide staining, the GAPDH

signal intensity was significantly raised by glyoxal at pH 4 (Fig 3B).

To test whether similar effects apply also to lipids, we immuno-

stained cultured cells for phosphatidylinositol-(4,5)-P2 (PIP2). The

intensity of the immunostaining was substantially higher after

glyoxal fixation (Appendix Fig S8).

The stronger fixation induced by glyoxal could be a concern for

experiments relying on enzymatic tags, such as the SNAP-tag (Xue

et al, 2015). Strong fixation may damage the enzyme, which would

result in limited labeling. To test this, we expressed proteins

coupled to the SNAP-tag in cultured cells, fixed them with PFA or

glyoxal, and then incubated them with a fluorophore that is bound

by the SNAP-tag, which couples to it covalently. The intensity of

glyoxal-fixed samples was significantly higher than that of PFA-fixed

samples (Appendix Fig S9).

Glyoxal provides higher-quality STED images in immunostaining
than PFA

Having verified that glyoxal is a faster and more effective fixative

than PFA, we proceeded to investigate its efficiency in immunostain-

ing. We expressed fluorescent protein chimeras of reporters for

mitochondria, the Golgi apparatus, the plasma membrane, the

cytoskeleton, and vesicles, fixed the cells with PFA or glyoxal, and

immunostained them. The immunostaining intensity of all of these

structures, defined by the fluorescent protein signals, was signifi-

cantly higher after glyoxal fixation (Appendix Fig S10). To also test

this without the expression of fluorescently tagged proteins, we

immunostained cells that had been incubated with fluorescently

labeled transferrin (Appendix Fig S11). The transferrin is in this case

present in endosomes, which should co-localize with endosomal

markers such as EEA1. The co-localization was substantially higher

after glyoxal fixation (Appendix Fig S11).

We then focused on cultured neurons, which have been a standard

preparation for nanoscopy (Willig et al, 2006; Xu et al, 2013), and

found that the resulting images were often brighter (Fig 4). We
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Figure 11. Comparison of stained vimentin and a-synuclein in human neuroglioma cells after fixation with either PFA or glyoxal.

Cells were fixed with PFA or glyoxal for 10 min and were stained for endogenous vimentin, or for expressed a-synuclein. A quantification of the staining intensities indicates
that glyoxal fixation allows for significantly brighter stainings for alpha-synuclein, but that PFA was superior for endogenous vimentin (leftmost graph). The fluorescence
intensity of vimentin expressed with an mOrange2 tag was also analyzed after fixation with PFA or with glyoxal; the latter allowed more mOrange2 fluorescence to be
detected (rightmost graph). N = 29–81 cell regions per condition (mean � SEM). *P < 0.05, ***P < 0.001 (Wilcoxon rank-sum test). Scale bar: 10 lm.
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analyzed the intensity of the STED images, in terms of signal over back-

ground (Fig 4), and determined that glyoxal indeed provided a higher

signal for the large majority of the neuronal targets we investigated.

When investigated by STED microscopy, the many images of

PFA-fixed cells appeared dominated by isolated, uniformly distrib-

uted spots, which presumably represent antibody clusters (Lang &

Rizzoli, 2010; Opazo et al, 2012). The immunostaining signals

appeared to be grouped in less uniform, more organelle-like struc-

tures after glyoxal fixation. To quantify this impression, an experi-

enced user counted the number of organelle-like structures per lm2,

in a blind fashion, for 20 targets immunostained in neurons. This

provided a quantitative (albeit user-driven) measurement of the

accuracy of the stainings (Appendix Fig S12). This analysis

suggested that the immunostainings performed after glyoxal fixation

more readily allow the identification of organelles, for the majority

of the targets. This impression was confirmed by several additional

analyses (see Appendix Figs S13 and S14).

A possible cause for the appearance of isolated, uniformly distrib-

uted spots in the PFA-fixed samples is the loss of some of the unfixed

soluble molecules after PFA fixation, through diffusion into the extra-

cellular space. As indicated in Fig 3, 40% of the proteins remained

unfixed and could therefore diffuse from the samples. To further test

this hypothesis, we analyzed hippocampal neurons in electron micro-

scopy, after fixation with PFA or glyoxal (Appendix Fig S15). The

cytosol appeared clearer (less electron-dense) in the PFA-fixed

samples. In contrast, the glyoxal-fixed samples had a more electron-

dense cytosol, which rendered them similar, at least superficially, to

samples prepared by high-pressure freezing (Appendix Fig S15).

We concluded, so far, that glyoxal appeared to be more efficient

than PFA in several ways, such as speed and morphology preserva-

tion, which rendered it a better fixative for immunostaining and

nanoscopy. Albeit we focused so far mostly on cell cultures, we also

tested glyoxal in tissue preparations, where it enabled us to perform

accurate immunostainings, in both Drosophila and mouse

(Appendix Figs S16–S18). We did not observe any difficulties in the

antibody penetration in such tissues, in contrast to fixation by, for

example, glutaraldehyde (as discussed in the Introduction).

Glyoxal provides higher-quality images in immunostaining for
many different laboratories

The glyoxal fixation procedure established above was then tested in

11 different laboratories, in four countries (Germany, Sweden,

United Kingdom, and United States). We present the results in

alphabetical order.

The Boyden laboratory (MIT Media Lab and McGovern Institute,

Departments of Brain and Cognitive Science and Biological Engineer-

ing, Cambridge, Massachusetts, USA) tested nucleoporin 160 in

conventional immunostainings of cell cultures and found that fixation

with glyoxal at pH 4 resulted in brighter images than those obtained

with PFA fixation. The samples exhibited similar morphology (Fig 5).

The Duncan laboratory (Edinburgh Super-Resolution Imaging

Consortium, Institute of Biological Chemistry, Biophysics, and

Bioengineering, Heriot-Watt University, Edinburgh, UK.) also used

conventional immunostainings of cultured cells (AtT20 cells) and

analyzed the SNARE proteins syntaxin 1 and SNAP25 and the auto-

phagy marker LC3B. The immunostainings of the two SNARE

proteins were brighter after glyoxal fixation (Fig 6), whereas LC3B

staining was brighter after PFA fixation. The morphology of the cells

appeared similar for the two fixatives.

The Hell laboratory (Department of NanoBiophotonics, Max-

Planck-Institute for Biophysical Chemistry, Göttingen, Germany)

used 3D STED microscopy to analyze the organization of several

cytoskeletal proteins and of two membrane channels in axons and

in growth cones of rat hippocampal cultured neurons (Fig 7). Actin

was labeled using phalloidin, while all other proteins were labeled

by immunostaining with previously published antibodies. Phalloidin

stainings were similar after PFA or glyoxal fixation in axons

(Fig 7A), but glyoxal revealed fine structures in growth cones that

were not visible even after strong fixation with PFA and glutaralde-

hyde (Fig 7D). Neurofilaments were brighter after glyoxal fixation

(Fig 7C), while another cytoskeletal element, ankyrin G, was brighter

for PFA fixations (Fig 7A). The cytoskeletal protein bII-spectrin was
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Figure 12. Comparison of immunostainings for mitochondrial proteins
after fixation with either PFA or glyoxal.

Cells were stained with MitoTracker Orange prior to fixation with the respective
fixative and immunostained for the mitochondrial proteins ATP5B, COA6,
NDUFA9, and TIM23. Quantification of the staining intensity shows a significant
increase of fluorescence (signal over background) for two markers (ATP5B and
MitoTracker) after fixation with glyoxal, whereas for the remaining three
proteins, immunostainings seem to be more efficient after fixation with PFA,
albeit the differences are small. N = 18–128 cells per condition (mean � SEM).
Scale bar = 5 lm. ***P < 0.001 (two-sided Student’s t-test for ATP5B and
NDUFA9, Wilcoxon rank-sum test for all other proteins).
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equally well stained in PFA or glyoxal fixation (Fig 7C); the same was

observed for voltage-gated sodium channels (Fig 7B). The stainings

for voltage-gated potassium channels were somewhat more regular

for glyoxal fixation (Fig 7B). Finally, the staining of tubulin was

marginally less bright for glyoxal fixation when compared with a

protocol optimized for tubulin stainings (fixation with PFA and

glutaraldehyde), and dynamic microtubules in the growth cones were

better preserved with that fixation (Fig 7D).

The Lauterbach team (Max-Planck-Institute for Brain Research,

Frankfurt am Main, Germany) focused on sepia fin immuno-

stainings, testing the organization of FMRFamide in axons.

Paraformaldehyde fixation resulted in poorer morphology, with

fragmented axons, while glyoxal fixation revealed axons that

appeared physiologically normal (Fig 8).

The Lehnart laboratory (Heart Research Center, Department of

Cardiology & Pulmonology, University Medical Center Göttingen,

Germany) analyzed the trafficking and signal domain scaffolding

protein caveolin-3 and the ryanodine receptor (of the sarcoendoplas-

mic reticulum) in ventricular myocytes isolated from mouse hearts,

using STED microscopy. The immunostaining intensity of both of

these proteins was significantly higher for glyoxal fixation (Fig 9).

Of note, the morphology remained similar, as determined by 3D

STED microscopy.

The Moser laboratory (Institute for Auditory Neuroscience and

InnerEarLab, University Medical Center Göttingen; Auditory Neuro-

science Group, Max-Planck-Institute for Experimental Medicine

Göttingen, Germany) analyzed several proteins in the synapses

formed between mouse cochlear inner hair cells and afferent spiral

ganglion neurons (Fig 10). No substantial differences were found

for the active zone protein PSD95, for the trafficking protein otofer-

lin, and for the presynaptic voltage-gated calcium channel (CaV1.3).

The signal intensities were substantially higher after glyoxal fixation
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Figure 13. Comparison of immunostained HeLa cells after fixation with either PFA or glyoxal.

The fluorescence intensity of a variety of proteins was compared between cells fixed with PFA or glyoxal. Quantification is shown as percentage of signal derived from PFA-
fixed cells. Eight out of the 18 target proteins which were stained show significantly brighter signal when fixed with glyoxal. Only four proteins show significantly reduced
staining intensity. For LC3B, the intensity of less than 5 cells was quantified; therefore, single data points were plotted in addition to the bars. N = 3–44 cells per condition
(mean � SEM). Scale bar = 10 lm. **P < 0.01, ***P < 0.001 (Wilcoxon rank-sum test for APPL1, ATPB, BAG6, caveolin-1, GATA6 and HSC70, two-sided Student’s t-test for
all other proteins).
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for the presynaptic active zone protein CtBP2, the calcium buffer

protein calretinin, and the postsynaptic active zone protein Homer

1. For none of the tested proteins was the signal found to be poorer

in glyoxal in this preparation.

The Outeiro laboratory (Department of Experimental Neurodegen-

eration, Center for Nanoscale Microscopy and Molecular Physiology

of the Brain, University Medical Center Göttingen; Max-Planck-

Institute for Experimental Medicine, Göttingen, Germany) investi-

gated the cytoskeletal protein vimentin, along with alpha-synuclein, a

soluble protein whose propensity to aggregate is a potential cause for

Parkinson’s disease (Fig 11). Vimentin immunostainings were ~20%

brighter after PFA fixation. A stronger phenotype was observed for

alpha-synuclein immunostainings, which were twofold brighter after

glyoxal fixation. The Outeiro laboratory also tested a fluorescence

tag, mOrange2, in the two fixation conditions, and found that ~20%

more fluorescence could be detected after glyoxal fixation.

The Rehling laboratory (Department of Cellular Biochemistry,

University Medical Center Göttingen; Max-Planck-Institute for

Biophysical Chemistry, Göttingen, Germany) analyzed several mito-

chondrial proteins in cell cultures, using conventional immunostain-

ings, and found that the signals were better, albeit within the same

range, for PFA fixations of TIM23, COA6, and NDUFA9. For ATP5B

and for MitoTracker stainings, the situation was inversed, with

glyoxal fixations providing substantially improved images (Fig 12).

The Schwappach laboratory (Department of Molecular Biology,

University Medical Center Göttingen, Germany) also relied on cell

cultures to analyze a large palette of proteins involved in several

processes, from nuclear organization to mitochondria and to the

secretory pathway. Seven proteins were similar for PFA and glyoxal

fixations (with marginally dimmer staining for Sec61b, an endoplas-

mic reticulum protein, after glyoxal fixation). The immunostainings

for the lysosomal marker LAMP1 and for ATPB, a component of the

mitochondrial ATP synthase, were far poorer after glyoxal fixation

than after PFA fixation. In contrast, eight target proteins provided

brighter immunostainings after glyoxal fixation, with the largest dif-

ferences seen for the Golgi marker GM130 and for the SNARE

syntaxin 5 (Fig 13).

The Testa (Department of Applied Physics, KTH Royal Institute

of Technology, Stockholm, Sweden) laboratory analyzed, using
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Figure 14. Comparison of immunostained U2OS cells and primary
hippocampal neurons after either PFA or glyoxal fixation.

Immunostaining of the Na/K ATPase in primary hippocampal neurons shows a
different distribution of the protein between PFA-fixed and glyoxal-fixed
samples. While in PFA-fixed neurons, the antibody falsely stains the nucleus as
well as the cytoplasm (100% of the 82 cells we analyzed), in glyoxal-fixed
neurons the nucleus is devoid of signal, and the membrane appears to be
correctly labeled (arrowheads; 100% of the 60 cells we analyzed). U2OS cells
were immunostained for mitochondria (Tom20) and ER (EGFP-KDEL). The
fixation and/or staining of mitochondria seems to be comparable in glyoxal and
in PFA-fixed cells. The staining of the ER shows an improved signal-to-noise
ratio. The signal appears de-localized from the ER for multiple PFA-stained cells
(25% of 36 analyzed cells, see arrows), while this is rare for the glyoxal-stained
cells (3.4% of 58 analyzed cells). Scale bar = 10 lm.

▸Figure 15. Comparison of mouse tissue staining following either PFA or glyoxal fixation.

A, B Confocal images showing staining of olfactory marker protein (OMP) and b3-tubulin along the dorsal aspect of the mouse olfactory epithelium. While sections
from both types of fixative show OMP signal in the olfactory sensory neuron somata, their dendrites, and axons, the axon bundles (green arrow) located above the
olfactory epithelium exemplify the clear signal-to-noise ratio benefits of glyoxal fixation versus that of the PFA-fixative. Immunostaining with the b3-tubulin
antibody stains the dendrites and axons (blue arrowheads) in both PFA and glyoxal-fixed tissue, but strong staining of the cilia (blue arrows) can only be observed
in the glyoxal-fixed sections (B).

C, D Confocal images depicting bundles of axons belonging to olfactory sensory neurons on the path toward the olfactory bulb. Identities of the axons are in part
defined by the neuropilin-1 (Nrp1) and neuropilin-2 (Nrp2) expression levels, visualized here with antibodies raised against the two proteins. While complementary
expression of the two molecules can be seen in the PFA-fixed sections (C), the glyoxal-fixed sections (D) exhibit profoundly improved signal-to-noise ratios for
Nrp-1 (red arrows), and in the case of Nrp-2, also the segmentation of the axon bundle into varying levels of Nrp-2 (green arrows).

E, F Confocal images of olfactory sensory neuron axons coalescing into glomeruli where they synapse with dendrites of olfactory bulb neurons. The axons of olfactory
sensory neurons can be readily visualized with OMP staining (green) in the superficial olfactory nerve layer and terminating in glomeruli located below (green arrows).
While sections fixed with either PFA or glyoxal display adequate staining levels, the signal distribution of the PFA-fixed tissue appears more irregular (E), seemingly
lacking the neurofilamentary morphology that appears preserved in the glyoxal-fixed sections (F). The glomeruli themselves are neuropil structures comprised
primarily of olfactory sensory neurons forming synapses with dendrites of mitral/tufted cells as well as dendrites of periglomerular neurons. Immunostaining with
vesicular glutamate transporter 2 (VGLUT2) allows visualization of these structures and is easily seen in the glyoxal-fixed section (F), while it appears the antigen was
masked by PFA fixation as no signal above background can be seen in the PFA-fixed panel (red arrows in E). Note that a different polyclonal antibody for VGLUT2 from
the same provider does provide signal with PFA, albeit weaker versus glyoxal (inset). Staining with b3-tubulin touts the benefits of glyoxal both due to the signal
improvements in the case of the mild staining in the axons of the olfactory nerve layer that is only visible in the glyoxal-fixed tissue, but also in preserving tissue
morphology as demonstrated by the dendritic processes inside glomeruli (blue arrows) and in the external plexiform layer located below the glomeruli.
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confocal microscopy, a membrane marker (the Na+/K+-ATPase), a

mitochondria marker (Tom20), and an endoplasmic reticulum

marker (overexpressed EGFP coupled to a KDEL signal) in primary

cultured neurons or in cultured cells (Fig 14). The Na+/K+-ATPase

was revealed correctly as a membrane protein only after glyoxal fix-

ation, while it was found mostly in the nucleus after PFA fixation.

Tom20 stainings were similar for the two fixations. EGFP-KDEL

stainings had a poorer morphology after PFA fixation, with this

protein apparently having spilled over from the endoplasmic reticu-

lum during fixation in a quarter of all analyzed cells.

Finally, the Zapiec group (Max Planck Research Unit for Neuro-

genetics, Frankfurt am Main, Germany) analyzed different proteins

in the mouse olfactory epithelium and bulb and found substantially

stronger immunostainings after glyoxal fixation for the olfactory

marker protein (OMP; Fig 15A and B), for neuropilin-1 and neuro-

pilin-2 (Fig 15C and D), and for the vesicular glutamate transporter

2 (Fig 15E and F). The same was observed for b3-tubulin immuno-

stainings (Fig 15A, B and E, F).

Discussion

We conclude that glyoxal fixation appears to be more efficient

than PFA for many laboratories, in several countries. An
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Figure 16. Overview of the results obtained from all immunostainings, in all of the laboratories testing glyoxal.

Various cellular targets, ranging from the nucleus to synapses of hippocampal neurons, were tested after fixation with either PFA or glyoxal by us and 11 additional
laboratories. Overall, 51 targets were better stained after glyoxal fixation than after PFA fixation, 12 targets were stained worse, and 19 targets were equally well stained.
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overview of the results, indicating the different cellular targets

analyzed, is presented in Fig 16. Overall, 51 targets were better

stained after glyoxal fixation, 12 targets were stained worse, and

19 targets were stained equally well, which implies that glyoxal

fixation seems to be generally superior to PFA. The strongest

difference is seen for membrane proteins and for proteins of the

Golgi apparatus. The organelle for which glyoxal is least success-

ful is the mitochondrion.

In principle, glyoxal could be combined with other fixatives,

including glutaraldehyde, for an even stronger fixation. However,

the behavior of aldehyde fixatives is exceedingly complex, lead-

ing to many side reactions (Migneault et al, 2004), which

renders such an experiment difficult to reproduce. In a few

trials, glutaraldehyde addition to glyoxal solutions actually

caused poor morphology preservation, indicating that this may

not be an optimal solution. Post-fixation with glutaraldehyde, for

stronger and longer-lasting sample preservation, is nevertheless

possible, as we observed in the electron microscopy experiments

(Appendix Fig S15; see also the respective Materials and Methods

section).

Since glyoxal is substantially less harmful by inhalation than

PFA (Wicks & Suntzeff, 1943), we suggest that it should replace

PFA for many applications. Comparative testing will still be

needed for every antibody before settling on a fixation proce-

dure. Nonetheless, we found that glyoxal typically provides

immunostainings of better quality than PFA. In the few cases in

which PFA provided brighter images, the glyoxal images were

nevertheless still usable, revealing structures that appeared

biologically accurate, with the clear exception of the lysosome

marker LAMP1 and of the mitochondrial ATP synthase (Fig 13).

The opposite situation, however, was far more often encoun-

tered, especially for the membrane proteins such as the Na+/

K+-ATPase (Fig 14), the SNAREs SNAP25 and syntaxin 1

(Fig 6), or multiple proteins of the mouse olfactory epithelium

(Fig 15).

While an extensive discussion of why this may be the case is

beyond the purpose of this work and would require an in-depth

analysis of the fixation chemistry of both PFA and glyoxal, it is

probable that the appearance of uniformly distributed small spots

in PFA-fixed samples (Fig 4 and Appendix Discussion) is due to

insufficient cross-linking of proteins. The appearance of such spots

has been a concern since the initial applications of super-resolu-

tion microscopy (see, e.g., Lang & Rizzoli, 2010), which mostly

revealed structures of ~70–100 nm in size. The fact that PFA only

fixes about 60% of the proteins (Fig 3) implies that a large fraction

of the proteins is still mobile, can change its distribution during

immunostaining, and may be even lost from the samples. We

assume that the faster and stronger fixation induced by glyoxal

(Figs 1 and 2) plays a central role in improving the quality of the

immunostainings, by maintaining the proteins in their organelle

locations.

We conclude that this feature, the stronger and more accurate

fixation, makes glyoxal a good candidate for the fixative of choice

in immunostainings. In our opinion, glyoxal should still be

preferred even for targets for which the two fixatives work equally

well, because PFA presents substantially more health hazards than

glyoxal during normal, routine laboratory work (Wicks & Suntzeff,

1943).

Materials and Methods

Paraformaldehyde (PFA) and glyoxal preparation

For all experiments, a 4% w/v paraformaldehyde (Sigma-Aldrich

#P6148) solution and a 3% v/v glyoxal (Sigma-Aldrich #128465)

solution were used. Paraformaldehyde was dissolved in PBS

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH

7.4). The glyoxal solution was prepared according to the following

protocol:

For ~4 ml glyoxal solution mix:

2.835 ml ddH2O

0.789 ml ethanol (absolute, for analysis)

0.313 ml glyoxal (40% stock solution from Sigma-Aldrich,

#128465)

0.03 ml acetic acid

Vortex the solution and bring the pH to 4 or 5 by adding drops

of 1 M NaOH until respective pH is reached. Check pH with pH

indicator paper. The solution should be kept cool and used within

a few days, otherwise glyoxal might precipitate. If the stock solu-

tion shows precipitation, glyoxal can be redissolved by heating the

solution to ~50°C (see also information provided by Sigma-

Aldrich).

Results obtained with glyoxal at pH 5 are shown in all figures,

unless noted otherwise (Appendix Fig S2 shows data obtained from

glyoxal pH 4). For several control experiments (as noted in the

figure legends), the same amount of ethanol was added to the PFA

solution.

The fixatives for the SDS–PAGE experiments (Fig 3A,

Appendix Fig S7) were prepared so that the final amount of PFA

and glyoxal (mixed with the cytosol samples) were 4% and 3%,

respectively. As a control for the SDS–PAGE experiments, 0.2%

glutaraldehyde (AppliChem #A3166) was added to a 4% PFA solu-

tion, as noted in the respective figure legend.

Propidium iodide and FM 1-43 imaging

Measuring cell penetration by the fixative (Fig 1A and B;

Appendix Fig S1) was done using the dyes propidium iodide

(Sigma-Aldrich #P4170) and FM 1-43 (Biotium #70020). COS-7

fibroblast cells (obtained from the Leibniz Institute DSMZ—German

Collection of Microorganisms and Cell Culture), plated on poly-L-

lysine (PLL)-coated coverslips and cultured under standard condi-

tions, were washed briefly in pre-warmed COS-7 cell Ringer

(130 mM NaCl, 4 mM KCl, 5 mM CaCl2, 1 mM MgCl2, 48 mM

glucose, 10 mM HEPES, pH 7.4). Afterward, the respective fixatives

were added to the cells, containing either propidium iodide (5 lM)

or FM 1-43 (1.5 lM). The cells were imaged for 60 min or 10 min,

respectively, using an inverted epifluorescence microscope (Nikon

Eclipse Ti-E), as described in the Imaging section, below.

To determine the intensity of the propidium iodide stainings

(Fig 3B), COS-7 cells were fixed in the appropriate fixative for

30 min on ice and for another 30 min at room temperature,

followed by 20 min of quenching in 100 mM NH4Cl and 100 mM

glycine. After washing in PBS for 5 min, the cells were incubated in

5 lM propidium iodide in PBS for 10 min at room temperature.

After a 15-min wash-off in PBS, the cells were imaged using the

same microscope as in the previous paragraph.
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For the optimization of glyoxal fixation (Appendix Table S1),

cultured primary hippocampal neurons were fixed for 30 min on ice

and another 30 min at room temperature in the respective fixative,

followed by 10-min quenching in 100 mM NH4Cl. The neurons were

washed two times briefly in PBS and imaged in a 1.5 lM FM 1-43

solution using an Olympus IX71 inverted epifluorescence micro-

scope described below in the imaging section.

Fluorescence in situ hybridization

Fluorescence in situ hybridization (Fig 3B) was performed using the

QuantiGene� ViewRNA ISH Cell Assay kit (Affymetrix #QVC0001),

according to the protocol provided by Affymetrix. In short, cultured

rat hippocampal neurons were fixed in one of the tested fixatives for

10 min on ice and for another 20 min at room temperature. After a

washing step, the cells were incubated in the provided detergent

solution, followed by probe hybridization for 3 h at 40°C (using

standard probes for GAPDH, provided with the kit by the manufac-

turer). Afterwards, the samples were washed in the provided wash

buffer, and signal amplification was done by incubating the samples

in pre-amplifier and amplifier solution for 30 min each at 40°C.

Label hybridization was done as well for 30 min at 40°C using Cy5

as dye. After washing in wash buffer and PBS, the samples were

embedded in Mowiol and imaged using an inverted Nikon Eclipse

Ti-E epifluorescence microscope.

Transferrin, LysoTracker®, and cholera toxin uptake assay

Live imaging of transferrin (coupled to Alexa Fluor 594, Thermo

Fisher #T133433) and cholera toxin subunit B (coupled to Alexa

Fluor 555, Thermo Fisher #C34776) uptake during fixation

(Appendix Fig S4) was done in COS-7 and HeLa (obtained from the

Leibniz Institute DSMZ—German Collection of Microorganisms and

Cell Culture) cells. The cells, plated on PLL-coated coverslips, were

incubated in 25 lg/ml transferrin or 1 lg/ml cholera toxin at 37°C

for 10 min. Afterward, the cells were washed in pre-warmed COS-7

cell Ringer and were imaged. A concentrated solution of each fixa-

tive was added to the Ringer so that the final concentration of fixa-

tive was 4% for PFA and 3% for glyoxal. The cells were imaged

during the first 10 min of fixation using the inverted Nikon Eclipse

Ti-E epifluorescence microscope.

The imaging of transferrin and LysoTracker uptake at different

time points during fixation (Appendix Figs S2 and S3) was done in

HeLa and COS-7 cells. The cells were incubated in the respective fix-

ative for 3, 5, 10, 15 and 20 min at 37°C prior to the addition of

25 lg/ml transferrin Alexa594 or 50 nM LysoTracker Red DND-99

(Thermo Fisher #L7528). Each sample was incubated in the fixative

and transferrin/LysoTracker for 20 more min. The cells were then

washed with PBS and embedded in Mowiol. The samples were

imaged with a confocal TCS SP5 microscope (Leica).

Lipofectamine transfection of COS-7 cells, HeLa cells, and
BHK cells

For the imaging of preservation of various GFP-tagged proteins and

structures (Appendix Figs S5 and S6), COS-7 fibroblasts or HeLa

cells were transfected with a TOMM70 construct from S. cerevisiae,

which was amplified by PCR and cloned into a pEGFP-N1 plasmid

(Clontech), as well as an EGFP-N1-a-tubulin construct, a nEGFP-N1-

SNAP25 construct, a mCherry-pCS2+-GalNacT2 (which was a kind

gift from Elena Taverna, MPI of Molecular Cell Biology and Genet-

ics, Wieland Huttner group) construct, and a mOrange2-N1-synap-

topHluorin construct. The chimeric mOr2-SypHy indicator was

created by substituting the superecliptic GFP from the original

SypHy (Granseth et al, 2006) construct (purchased from Addgene,

Cambridge, MA, USA) with the pH-sensitive mOrange2 fluorescent

protein (purchased from Addgene). One hour prior to transfection,

the cells were incubated in antibiotic-free medium. Lipofectamine�

2000 (Thermo Fisher #11668) and the DNA (0.5 or 1 lg per 18-mm

cover slip) were incubated in OptiMEM (Thermo Fisher #31985047)

for 20 min and were subsequently added to the cells. The medium

was changed back to normal culturing medium (DMEM containing

fetal calf serum, glutamine, penicillin, and streptomycin) the next

day, and cells were imaged using an inverted Nikon Eclipse Ti-E epi-

fluorescence microscope. The cells were imaged in COS-7 cell Ringer

before fixation and were imaged again after incubation in the dif-

ferent fixatives for 60 min.

For transfection with the GFP-tagged target protein VAMP2

(Appendix Fig S10), the following construct was used: pEGFP-N1-

VAMP2 (backbone plasmid was purchased from Addgene). 2.5 h

prior to transfection, the cells (BHK fibroblasts) were incubated in

antibiotic-free medium. 1 lg of DNA per 18-mm cover slip and Lipo-

fectamine� 2000 were incubated for 20 min in OptiMEM and after-

ward added to the medium. Cells were incubated in the mixture

overnight and were immunostained the following day after transfec-

tion.

For SNAP-tag labeling (Appendix Fig S9), HeLa cells were trans-

fected with the following constructs: cytoplasmatic SNAP-tag

(pSNAPf, purchased from New England Biolabs), a-synuclein-
SNAP-tag, VAMP2-SNAP-tag, and transferrin receptor-SNAP-tag.

The SNAP-tag fused to either the N- or the C-terminal of VAMP2

was created by PCR amplification of VAMP2 (Vreja et al, 2015) and

insertion into the SNAP-tag plasmid by Gibson assembly (Gibson

et al, 2009). The transferrin receptor (Opazo et al, 2012) and a-
synuclein (Lázaro et al, 2014) were amplified by PCR and inserted

into the SNAP-tag plasmid by Gibson assembly. 1 lg of DNA per

coverslip was incubated for 20 min with Lipofectamine� 2000, and

100 lg of the mixture in OptiMEM was added to each coverslip.

Cells were incubated overnight, and labeling was done the following

day, as described in the next section.

SNAP-tag labeling

Transfected HeLa cells were washed briefly in medium and then

fixed with either PFA or glyoxal pH 5 for 30 min on ice and another

30 min at room temperature. The cells were labeled with 0.3 lM
SNAP-Cell TMR-Star (New England BioLabs #S9105S) for 30 min

and afterward washed with PBS for 10 min. TMR fluorescence was

imaged at the Olympus IX71 inverted epifluorescence microscope.

Immunocytochemistry of cultured primary hippocampal neurons

Rat primary hippocampal neuron cultures (Fig 4 and Appendix Figs

S12–S14) were prepared as described before (Opazo et al, 2010;

Beaudoin et al, 2012) and were cultured either under standard

conditions, or in Banker arrangements, locally separated from the
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astrocyte feeder layer (as described in Kaech & Banker, 2006). The

neurons, plated on poly-L-lysine coated cover slips, were fixed in

PFA (pH 7, pH 4/5 or with Et-OH) or glyoxal for 60 min and were

subsequently quenched for 30 min in 100 mM NH4Cl. The pH of

the glyoxal solution used for fixation is presented in Table 1. For

each antibody, we used the pH that provided a brighter immuno-

staining. Permeabilization and background epitope blocking were

achieved by incubating the neurons for 15 min in blocking solution,

containing 2.5% BSA and 0.1% Triton X-100 in PBS. The samples

were incubated with primary antibodies diluted in blocking solu-

tion, for 60 min at room temperature. Table 2 presents the antibod-

ies and their dilutions from 1 mg/ml stocks. After washing another

15 min in blocking solution, secondary antibodies were applied for

60 min, at room temperature. Subsequent washing in high-salt PBS

(500 mM NaCl) and PBS was followed by embedding in Mowiol.

The samples were imaged with a STED TCS SP5 microscope

(Leica).

Immunocytochemistry of HeLa and COS-7 cells

HeLa cells that took up transferrin Alexa546 (see uptake assay

described above) were immunostained for endosomes (EEA1;

Appendix Fig S11). The cells were fixed in the respective fixative for

30 min on ice and another 30 min at room temperature. Afterward,

they were quenched with 100 mM NH4Cl for 20 min. Permeabiliza-

tion and blocking were done for 15 min in 2.5% BSA and 0.1%

Triton X-100 in PBS. Subsequently, the cells were incubated in the

primary antibody rabbit anti-EEA1 (Synaptic Systems #237002),

diluted 1:100 for 60 min. After washing in blocking/permeabiliza-

tion solution for 15 min, the cells were incubated with the

secondary antibodies for 60 min. A donkey anti-rabbit antibody

coupled to Atto647N (Rockland, diluted 1:500) was used. Subse-

quent washing in high-salt PBS and normal PBS was followed by

embedding in Mowiol, and the cells were imaged at the confocal

TCS SP5 microscope (Leica).

Immunostaining of overexpressed GFP-tagged proteins

(Appendix Fig S10; see transfection described earlier) was done like

described above. Following primary antibodies were used: mouse

anti-TOMM20 (Sigma-Aldrich #WH0009804M1), diluted 1:200,

rabbit anti-a-tubulin (Synaptic Systems #302203), diluted 1:1,000,

Table 1. The pH of glyoxal solution used for fixation of neuronal
samples.

Staining pH

a/b-SNAP 4

a-Tubulin 5

b-Actin 5

Bassoon 4

Calreticulin 5

Clathrin LC 4

HSC70 4

Neurofilament L 4

NSF 4

PSD95 4

Rab5 4

Rab7 4

SNAP23 4

SNAP25 4

SNAP29 4

Syntaxin 1 5

Syntaxin 16 4

Synaptophysin 5

Synaptotagmin 7 4

VAMP2 5

Table 2. Antibodies used for the immunostaining of neuronal
proteins.

Target
protein Species Company Dilution

Primary
antibodies

*a/b-SNAP Mouse Reinhard Jahn 1:100

a-Tubulin Rabbit SySy (#302203) 1:4,000

b-Actin Mouse Sigma-Aldrich
(A1978)

1:300

Bassoon Mouse Enzo Lifescience
(#SAP7F407)

1:100

Calreticulin Rabbit Cell Signaling
(#12238)

1:100

Clathrin LC Mouse SySy (#113011) 1:1,000

HSC70 Mouse Santa Cruz
(#sc-7298)

1:100

Neurofilament L Rabbit SySy (#171002) 1:500

NSF Rabbit SySy (#123002) 1:500

PSD95 Mouse Neuromap
(#75-028
(K28/43))

1:200

*Rab5 Mouse Reinhard Jahn 1:100

Rab7 Rabbit Cell Signaling
(#9367)

1:100

SNAP23 Rabbit SySy (#111202) 1:100

SNAP25 Mouse SySy (#111002) 1:500

SNAP29 Rabbit SySy (#111302) 1:500

Syntaxin 1 Mouse SySy (#110011) 1:300

Syntaxin 16 Rabbit SySy (#110162) 1:100

*Synaptophysin Rabbit Reinhard Jahn
(G96)

1:1,500

Synaptotagmin 7 Rabbit SySy (#105173) 1:100

VAMP2 Mouse SySy(#104211) 1:1,500

Secondary antibodies

Anti-mouse IgG
(Atto647N)

Goat Sigma-Aldrich
(#50185)

1:150

Anti-rabbit IgG
(Atto647N)

Goat Rockland
(#611-156-003)

1:500

Indicated antibodies (*) were kind gifts of Prof. Dr. Reinhard Jahn, Max-
Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

The EMBO Journal Vol 37 | No 1 | 2018 ª 2017 The Authors

The EMBO Journal Glyoxal as an alternative to PFA in immunostaining Katharina N Richter et al

154

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 17, 2025 from
 IP 165.124.15.187.



mouse anti-VAMP2 (Synaptic Systems #104211), diluted 1:200,

mouse anti-TGN38 (BD Bioscience #610898), diluted 1:100, mouse

anti-SNAP25 (Synaptic Systems # 111011), diluted 1:500.

Immunostaining of phosphatidylinositol-4,5-bisphosphate (PIP2)

was done as described above (Appendix Fig S8). The primary anti-

body mouse anti-PIP2 (Abcam #ab11039), diluted 1:50, was used.

As secondary antibody, a donkey anti-mouse coupled to Cy2 was

used in the dilution 1:100. The cells were imaged with the Olympus

IX71 inverted epifluorescence microscope.

Immunohistochemistry of Drosophila 3rd-instar larvae
neuromuscular junctions

Drosophila melanogaster 3rd-instar larvae (Appendix Fig S16) were

dissected in standard Drosophila medium as described before (Jan &

Jan, 1976). The larvae were fixed for 30 min on ice, and for another

30 min at room temperature, followed by 30 min of quenching in

100 mM NH4Cl. Permeabilization and blocking were performed for

30 min in PBS containing 2.5% BSA and 0.5% Triton X-100.

Incubation in primary antibodies was done for 60 min at room

temperature. The following antibodies were used: mouse

anti-synaptotagmin 1 (3H2 2D7), diluted 1:50, mouse anti-synapsin

(3C11), diluted 1:20, mouse anti-syntaxin (8C3), diluted 1:50,

mouse anti-SAP47 (nc46), diluted 1:100, and mouse anti-bruchpilot

(nc82), diluted 1:50. All antibodies were purchased from the Devel-

opmental Studies Hybridoma Bank at the University of Iowa

(DSHB). After 30 min of washing in the blocking solution (0.5%

Triton X-100), the samples were incubated in a Cy3-labeled goat

anti-mouse antibody (1:100, Dianova #715-165-150) for 60 min at

room temperature. Subsequently, larvae were washed in high-salt

PBS and PBS and embedded in Mowiol. The samples were then

imaged using an Olympus inverted epifluorescence microscope.

Immunohistochemistry of mouse inner hair cells

Organs of Corti (Appendix Fig S17) were dissected from P14 to

P18 wild-type mice in ice-cold HBSS (5.36 mM KCl, 141.7 mM

NaCl, 10 mM HEPES, 34 mM L-glutamine, 6.9 mM D-glucose,

1 mM MgCl2, 0.5 mM MgSO4, pH 7.4). The inner hair cells were

stimulated by incubating the tissue for 3 min in HBSS with high

potassium (65.36 mM KCl) at 37°C. Afterward, the organs were

fixed for 30 min on ice and for another 30 min at room temper-

ature. The subsequent quenching was performed for 30 min in

100 mM NH4Cl and 100 mM glycine. The organs were then

permeabilized and blocked for 30 min with PBS containing 0.5%

Triton X-100 and 2.5% BSA. The primary antibodies mouse anti-

otoferlin (Abcam #ab53233), diluted 1:350, and rabbit anti-ribeye

(Synaptic Systems #192003), diluted 1:1,500, were applied for

60 min. After 30 min of washing, the organs were incubated in

secondary antibodies for 60 min. Atto647-labeled goat anti-mouse

(1:250, Sigma-Aldrich #50185) and the Cy2-labeled goat anti-

rabbit (1:100, Dianova #111-225-144) secondary antibodies were

used. Washing in high-salt PBS and PBS was followed by

embedding in melamine, as described previously (Revelo et al,

2014). Organs were then cut into 200-nm thin sections using a

Leica EM UC6 ultramicrotome. The sections were embedded in

Mowiol and were imaged using a STED TCS SP5 microscope

(Leica).

Immunohistochemistry of mouse levator auris longus
neuromuscular junctions

The levator auris longus muscle (Appendix Fig S18) was dissected

from adult mice in ice-cold mouse Ringer (5 mM KCl, 154 mM NaCl,

5 mM HEPES, 11 mM D-glucose, 1 mM MgCl2, 2 mM CaCl2, pH 7.3).

Prior to fixation, the acetylcholine receptors were stained by incubat-

ing the muscles in a 1:150 dilution of tetramethylrhodamine-labeled

bungarotoxin (Sigma-Aldrich #T0195) for 15 min. After washing the

tissue for 15 min in mouse Ringer, it was fixed for 30 min on ice and

another 30 min at room temperature. Quenching was performed in

100 mM NH4Cl and 100 mM glycine. The tissue was then permeabi-

lized and blocked by incubating in PBS containing 0.5% Triton X-

100 and 2.5% BSA for 30 min. Primary antibodies were applied for

60 min. The following antibodies were used: mouse anti-bassoon

(Enzo Lifescience #SAP7F407), diluted 1:100, and rabbit anti-piccolo

(Synaptic Systems #142003), diluted 1:150. After 30 min of washing,

secondary antibodies were applied for 60 min (Atto647-labeled goat

anti-mouse, Sigma-Aldrich #50185, diluted 1:150, and Cy2-labeled

goat anti-rabbit, Dianova #111-225-144, diluted 1:100). After 20

more min of washing in the blocking solution, 30 min in high-salt

PBS, and 20 min in PBS, the samples were embedded in 2,20-thio-
diethanol as described previously (Revelo & Rizzoli, 2015; TDE,

Sigma-Aldrich #166782). The neuromuscular junctions were imaged

using a STED TCS SP5 microscope (Leica).

Imaging with an inverted epifluorescence Nikon Eclipse
Ti-E microscope

Experiments from Figs 1, 2 and 3B, Appendix Figs S4–S6 were

imaged using the Nikon inverted epifluorescence microscope. The

microscope was equipped with an HBO 100-W lamp and an IXON

X3897 Andor Camera. For all samples, a 60X Plan apochromat oil

immersion objective (NA 1.4) was used (from Nikon). The filter sets

and time course (if applicable) used for imaging are shown in

Table 3. Images were obtained using the image acquisition software

NiS-Elements AR (Nikon).

Imaging with a STED/confocal TCS SP5 microscope (Leica)

The immunostained rat hippocampal neurons (Fig 4, Appendix Figs

S12–S14), mouse inner hair cells (Appendix Fig S17), and neuro-

muscular junctions (Appendix Fig S18), as well as the transferrin

and LysoTracker uptake (Appendix Figs S2, S3 and S11) and the

immunostained GFP-tagged proteins (Appendix Fig S10) were

imaged using a pulsed STED microscope, built on the basis of

the TCS SP5 confocal microscope (Leica). The microscope was

equipped with a pulsed diode laser (18 mW, 80 MHz, 640 nm

emission, PicoQuant) for excitation of the STED dye, and with a

pulsed infrared titanium: sapphire (Ti:Sa) tunable laser (1W,

80 MHz, 720–1,000 nm, Mai Tai Broadband; Spectra-Physics) for

depletion set at a wavelength of 750 nm. For confocal imaging,

an Argon laser (488 nm) and HeNe laser lines (543, 594,

633 nm) were used for excitation. Detection was achieved by

ultra-sensitive avalanche photodiodes and high sensitivity, low

noise PMTs (Leica). All samples were imaged using a 100× HCX

PL APO oil immersion STED objective (NA 1.4). Images were

acquired using the Leica LAS AF imaging software, with a pixel
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size of 20 × 20 nm, 30 × 30 nm or 60 × 60 nm and a scanning

speed of 1,000 Hz.

Imaging with an inverted epifluorescence Olympus IX
71 microscope

The Drosophila larvae neuromuscular junctions (Appendix Fig S16),

the transfected and immunostained BHK (obtained from the

Max-Planck-Institute for biophysical chemistry Göttingen, Reinhard

Jahn) cells (VAMP2 expression in Appendix Fig S10), the FM 1-43

stained neurons (Appendix Table S1), the COS-7 cells, stained for

PIP2 (Appendix Fig S8), and the SNAP-tag labeled HeLa cells

(Appendix Fig S9) were imaged using an Olympus IX 71 epifluores-

cence microscope, equipped with a 100 W mercury lamp and a F-

View II CCD camera (Soft Imaging Systems GmbH). The Drosophila

NMJs and PIP2 stained COS cells were imaged using a 100× TIRFM

oil immersion objective (NA 1.45), from Olympus. The BHK cells

and the SNAP-tag-labeled HeLa cells were imaged using the 40×

UPlan FLN air objective (NA 0.75) from Olympus. The hippocampal

neurons were imaged using a 60× UPlanApo oil immersion objective

(NA 1.35) from Olympus. Filter sets used for imaging can be found

in Table 4. Image acquisition was performed using the Olympus

CellP software.

SDS–PAGE of fixed rat brain cytoplasm

Rat brain cytosol (Fig 3A and Appendix Fig S7) was prepared by

homogenization of adult rat brains using a Teflon glass homogenizer

in 320 mM sucrose, 5 mM HEPES, pH 7.4 (adjusted with NaOH).

This was followed by a two-step centrifugation, first in an SS34 rotor

(Sorvall) for 12 minutes at 14,400 g, to pellet large tissue fragments,

and then in a TLA100.3 rotor (Beckman) for 60 min at 264,000 g to

pellet all remaining cellular fragments. All centrifugation steps were

performed at 4°C. The fixatives were prepared so that the final

amount of fixative in the solution with the cytosol was 4% PFA (ph

7, pH 4, and 5) and 3% glyoxal. The samples were fixed for 15, 30,

45, or 60 min at room temperature (or 10 min at 37°C for one of the

PFA fixation controls). As control samples, cytosol was also fixed

with PFA plus 0.2% glutaraldehyde and PFA plus 20% ethanol. After

fixation, samples were prepared for running on SDS–polyacrylamide

gels by adding 2× Laemmli sample buffer (Laemmli, 1970) and heat-

ing for 5 min to 95°C. 10% polyacrylamide gels were prepared as

described previously (Brunelle & Green, 2014). 25 ll of each sample

and a non-fixed brain cytosol sample was run on the gels. The gels

were stained in Coomassie brilliant blue overnight and were

destained for 2–3 h in 50% methanol, 40% H2O, 10% acetic acid the

following day. The stained gels were scanned and analyzed.

Electron microscopy

For electron microscopy of chemically fixed cells (Appendix Fig

S15), primary hippocampal neurons were fixed for 20 min on ice

and for another 20 min at room temperature, followed by quenching

for 30 min in 100 mM NH4Cl and 100 mM glycine. The neurons

were then postfixed with 2.5% glutaraldehyde for 60 min at room

temperature. Another 20 min of quenching in NH4Cl and glycine

were followed by 60 min of incubation in 1% osmium tetroxide.

Afterward, the neurons were washed in filtered PBS for 15 min and

were dehydrated with a series of ethanol dilutions. Subsequently,

the cells were embedded in Epon resin by first incubating them for

3 h in a 1:1 mixture of ethanol and resin and then incubating in

pure resin for 48 h at 60°C. The samples were cut into 80- to

100-nm sections using a LeicaEM UC6 ultramicrotome and were

mounted on copper 50-mesh grids (Plano GmbH #2405C) or Form-

var-coated copper slot grids (Plano GmbH #G2500C). The thin

sections were labeled with 1% uranyl acetate for 10 min and were

afterward washed for several minutes in ddH2O. The samples were

imaged using a JEOL JEM1011 electron microscope (JEOL GmbH),

with a magnification of 10,000×.

For electron microscopy of high-pressure frozen samples

(Appendix Fig S15), primary hippocampal neurons were frozen

using a Leica HPM100 high-pressure freezer, using PBS with 20%

polyvinylpyrrolidone as filler solution. The samples were freeze-

substituted as described before (McDonald & Webb, 2011). Post-fixa-

tion was done in a mixture of 1% glutaraldehyde, 1% OsO4, and 1%

H2O (modified after Jiménez et al, 2006) prior to embedding in Epon

Table 3. Filter sets and time courses used for the Nikon Eclipse Ti-E microscope.

Figure panel Excitation filter Emission filter Dichroic mirror Time course

1A Cy3: 545/25 nm 605/70 nm 565 nm 60 min, every 5 min

1B EGFP: 470/40 nm 525/50 nm 495 nm 10 min, every 30 s

2 DIC DIC DIC 60 min, every 5 min

3B Cy3: 545/25 605/70 nm 565 nm –

3B Cy5: 620/60 nm 700/75 nm 660 nm –

Appendix Fig S5 EGFP: 470/40 nm 525/50 nm 495 nm –

Appendix Fig S6 (additional
GFP proteins)

EGFP: 470/40 nm 525/50 nm 495 nm –

Appendix Fig S4 Cy3: 545/25 nm (cholera toxin) 605/70 nm (cholera toxin) 565 nm (cholera toxin) 10 min, every 60 s

Texas Red: 562/40 nm (transferrin) 624/40 nm (transferrin) 593 nm (transferrin)

Table 4. Filter sets used for the Olympus IX 71 epifluorescence
microscope.

Filter Excitation Emission

FITC 494 518

RFP 561 585

Cy5 625 670
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via an Epon dilution series (McDonald & Webb, 2011). The samples

were cut into ultrathin sections (60 nm), stained in 1% uranyl

acetate, and imaged with a Zeiss transmission electron microscope.

Data analysis

All data analyses were performed automatically or semi-automati-

cally using MATLAB (The MathWorks, Inc.), with exception of the

analysis from Appendix Fig S12. Analyses in Figs 1A and B, and 3B,

and in Appendix Figs S1, S2, S3, S8, S9, and S16 were performed

using custom-written MATLAB routines that measure the average

fluorescence intensity in manually selected regions. For Fig 1A and

B, and Appendix Figs S1 and S16, the regions were selected manu-

ally. For Fig 3B, a MATLAB routine was used to separate cells from

each other, using the watershed transform, and to thus determine

the cellular regions of interest.

The fluorescence signals of the GFP and of the immunostainings

in Appendix Fig S10 were measured by a MATLAB automatic

routine that first identified the GFP signals, by applying a threshold

to remove background signals, and then measured the intensity of

the immunostainings in the GFP-positive regions of interest. For all

analyses of the signal intensity in terms of “signal over back-

ground”, signal- and background-containing regions of interest were

manually determined, before dividing the average intensity in the

former by the average intensity in the latter.

The analysis of the DIC images in Fig 2 was performed using a

MATLAB routine that calculated the correlation coefficients of circu-

lar regions of interest (~500 nm in diameter), selected manually in

the first image, to every other image taken throughout the 60 min of

imaging. A similar analysis was performed for the fluorescent

images from Appendix Fig S4, using circular regions of interest

centered on particular organelles, selected by the user. Again, the

same analysis was performed for the GFP images, before and after

fixation, from Appendix Fig S6, and for the images of transferrin-

labeled and immunostained cells (Appendix Fig S11). The SDS–

PAGE gels in Fig 3A and Appendix Fig S7 were analyzed by measur-

ing the overall band intensity that is left after fixation compared to

the non-fixed sample. The entire length of the lanes was measured,

and the intensity was summed over all bands. To avoid the smear

induced by fixed molecules, which is especially evident in

glutaraldehyde fixation, the signal along the lanes was first

subjected to a high-pass filter.

The efficiency of preserving mitochondria during fixation

(Appendix Fig S5) was analyzed by measuring the lengths of mito-

chondria before and after fixation. Regions of interest containing

mitochondria were manually selected, and the mitochondria were

detected by a thresholding procedure. The mitochondria length was

then determined automatically.

For the analysis of the electron microscopy images (Appendix Fig

S15), synaptic vesicles were selected manually, and line scans were

applied to each vesicle.

For the analysis of the immunostained proteins in hippocampal

neurons (Appendix Figs S12–S14), structures that appeared to be of

organellar organization were identified and counted manually. This

analysis was done blinded, randomizing both the order and the

nature of the images. The number of objects was counted per

immunostained lm2, in order to take into account the different

amounts of neuronal structures per image.

To analyze the structure of the observed objects, 100 typical

objects were selected by an experienced observer, again in a blind

fashion. The objects were clicked on, to select the center of the

area. Square regions of interest, of several lm in width, were auto-

matically generated, centered on the selected objects, and were

preserved for further analysis. After all objects were selected, the

regions of interest were overlaid, and each was rotated in turn (in

5° increments, using both the real image and a mirrored image),

until the best possible alignment to the other regions of interest was

obtained. Only the area within 1 lm from the region of interest

center was used in measuring the alignments, to restrict the align-

ment analysis to the selected object, and not to other objects that

may have been present in the regions of interest. The strength of

the alignment was verified by calculating the Pearson’s correlation

coefficient at every angle. Once a best fit was found (with the maxi-

mal Pearson’s coefficient), all images were summed, and the aver-

age object was thus obtained (shown in Appendix Figs S13 and

S14). Line scans, obtained by drawing horizontal lines through the

individual typical objects (after rotation), are shown in the graphs

in these figures (in the form of mean � SEM of all 100 line scans

through the 100 typical objects).

Statistics

Typically measurements were performed over multiple cells and

experiments. For experiments studying multiple cells, such as

neuronal immunostainings, we typically used at least 10 individual

neurons in each analysis. For experiments involving single cells

(such as time series obtained on one cell), we performed at least

three independent experiments. For biochemical experiments, multi-

ple experiments were performed (2–7). The sample numbers were

increased if substantial variation was noted in the initial experi-

ments. All graphs depicted here were generated using Sigma Plot

(Systat Software, Inc). All bar graphs show mean values, and all

error bars represent the standard error of the mean (SEM), calculated

in Sigma Plot (except for the quantification of cardiomyocyte stain-

ings in Fig 9, which represents mean values with standard deviation

values). For statistical analyses in Fig 3A and Appendix Fig S16

(multiple comparisons), an one-way ANOVA with a post hoc Tukey

test was performed. For all other statistical analyses, the two-sided

Student’s t-test (unpaired) or Wilcoxon rank-sum test was applied to

the data using the in-built function in Excel or using MATLAB. For

Fig 1 and Appendix Figs S4 and S5, the number of independent

experiments tested (N) was below 5. The t-test was chosen, assum-

ing that the results come from a normal distribution. The justifi-

cation for this assumption is that the variation between experiments

is solely driven by experimenter (pipetting) errors, which are consid-

ered to be normally distributed. For larger data sets, we used the

Jarque–Bera test to verify the normal distribution of the data points.

If the Jarque–Bera tests indicated normal distributions, we used

t-tests for verifying differences between the samples. If one or both

of the distributions were different from the normal distribution,

according to the Jarque–Bera tests, we used a two-sample Wilcoxon

rank-sum test to verify differences between the samples.

For display purposes, images were adjusted in brightness and

contrast using ImageJ (Wayne Rasband, US National Institutes of

Health). If intensities were compared, image adjustments in bright-

ness and contrast were equally applied to all conditions.
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Animals

P14 to P18 and adult wild-type mice (Mus musculus) from the

substrain C57Bl/6J were obtained from the University Medical

Center Göttingen. Newborn wild-type Wistar rats (Rattus norvegi-

cus) for the preparation of primary hippocampal neuron cultures

were obtained from the University Medical Center Göttingen as well.

Drosophila melanogaster of the Canton S strain were maintained in

the laboratory, using conventional methods.

All animals were handled according to the specifications of the

University of Göttingen and of the local authority, the State of Lower

Saxony (Landesamt für Verbraucherschutz, LAVES, Braunschweig,

Germany).

Methods of collaborating labs can be found in the Appendix.

Expanded View for this article is available online.
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