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Overview
• What is the difference between machine learning and 
statistical modeling?
◦ “The short answer is: None. They are both concerned with the 

same question: how do we learn from data?” – Dr. Larry 
Wasserman, Professor of Statistics and Data Science in the 
Department of Statistics and Data Science and in the Machine 
Learning Department at Carnegie Melon

https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/


Overview
• Machine Learning

◦ Is a method of data analysis that automates analytical model 
building.

◦ The process of teaching a computer system how to make accurate 
predictions when fed data.

◦ Gives computers the capability to learn without being explicitly 
programmed.



Overview
• Machine Learning includes

◦ Supervised Methods

◦ Unsupervised Methods

◦ Semi-Supervised Methods



Overview
• Supervised Methods

◦ Labeled outcomes or classes

◦ Goal is usually prediction or classification

◦ Focus may be on best prediction algorithm, or on which variables 
(features) are most closely associated with outcome

◦ Examples from traditional statistical methods: linear regression, 
logistic regression

◦ Examples from ML: random forest, support vector machines



Overview
• Unsupervised Methods

◦ No labels/annotations

◦ Goal is to uncover hidden structure/patterns in the dataset

◦ Examples from traditional statistical methods: principal 
component analysis, K-means clustering

◦ Examples from machine learning: model-based cluster analysis, 
distance weighted discrimination



Overview
• Semi-Supervised Methods

◦ Combination of Supervised and Unsupervised approaches

◦ Outcomes/classes are labeled for some part of the dataset

◦ Analysis usually done in steps with supervised followed by 
unsupervised or vice versa



Machine Learning vs. Statistical Modeling

https://blog.intact-systems.com/data-science-the-future-is-now/

https://blog.intact-systems.com/data-science-the-future-is-now/


Jamshidi, A., Pelletier, J. & 
Martel-Pelletier, J. 
Machine-learning-based 
patient-specific prediction 
models for knee 
osteoarthritis. Nat Rev 
Rheumatol 15, 49–60 
(2019).



From Traditional Statistical Models to ML
Exposure Outcome

Yes No

Yes a b

No c d

Risk in Exposed: a/a+b
Risk in Unexposed: c/c+d
Risk Ratio = (a/(a+b))/(c/(c+d))

Odds in Exposed: a/b
Odds in Unexposed: c/d
Odds ratio= (a/b) / (c/d) = a*d / b*c

Agreement/Accuracy = (a+d)/(a+b+c+d) Sensitivity = a/(a+c)
Specificity = d/(b+d)

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/EP/EP713_Association/EP713_Association_print.html

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/EP/EP713_Association/EP713_Association_print.html


From Traditional Statistical Models to ML
Prior Knee Injury Disease Progression in Knee OA

Yes No

Yes 50 150

No 100 700

Risk in Exposed: 50/(50+150)=0.25
Risk in Unexposed: 100/(100+700)=0.125
Risk Ratio = (0.25)/(0.125)=2

Odds in Exposed: 50/150=0.33
Odds in Unexposed: 100/700=0.14
Odds ratio= (0.33) / (0.14) = 2.33

Agreement/Accuracy = (750)/(1000)=75% Sensitivity = 50/150=33%
Specificity = 700/850=82%



Logistic Regression 
• Parametric Generalized Linear Model that we use when we have a 
binary outcome

log(Odds of Outcome) = β0 + β1*covariate

• Assumes a linear relationship between the log odds of outcome and 
covariate(s) 

• Available in standard software: PROC LOGISTIC in SAS, glm function in 
R, logit command in Stata

• Obtain odds ratio by exponentiating estimate for β1

• Example: log(odds (OA progression)) = -1.95 + 0.847*injury

OR(history of injury vs. no injury) = exp(0.847) = 2.33



Logistic Regression
• Multivariable logistic regression – two or more predictors

log(Odds of Outcome) = β0 + β1*covariate1 + β2*covariate2 + …

• Odds ratio – quantifies adjusted association between each 
predictor and outcome
◦ Adjusted association: holding all other predictors constant

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable8.html

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable8.html


Logistic Regression with Continuous 
Predictor

• log(Odds of Outcome) = β0 + β1*CTXII

• log(Odds of Progression) = -1.59 + 0.511*CTXII

• OR(1 unit increase in CTXII) = exp(0.511) = 1.7



Logistic Regression with Continuous 
Predictor

• Is there a cut-point in CTXII that best discriminates 
(classifies) between progressors and non-
progressors? 
◦ Maximize agreement (accuracy)?

◦ Maximize sensitivity? 

◦ Maximize specificity? 

◦ Maximize some combination? 



Logistic Regression with Continuous 
Predictor

•ROC Cuve
◦ Plots sensitivity vs. 1-specificity for all possible cut-points

High specificity (87.5%)
Low sensitivity (26%)
Corresponds to CTXII value of ~0.5

Low specificity (25%)
High sensitivity (86%)
Corresponds to CTXII value of ~ -1

Maximize Sens + Spec
Specificity (82%)
Sensitivity (43%)
Corresponds to CTXII value of ~0.1

Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press; New York: 2003.
Akobeng, Anthony K. "Understanding diagnostic tests 3: receiver operating characteristic curves." Acta paediatrica 96.5 (2007): 644-647.
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Logistic Regression with Two Continuous 
Predictors



Logistic Regression
• Sample Size – rule of thumb: 10 outcomes for each predictor (really, 
each degree of freedom)
◦ E.g., in our OA progression example, n=1000

◦ n=250 progressors
◦ n=750 non-progressors
◦ Suggests model with ~25 predictors

•How do we choose the “best” combination of predictors?

•What if the number of predictors > 25? 

•What if the number of predictors > 1000?  (p>n)

•Overfitting: the model should generalize to populations that were not 
included in the sample. Overfitting is when the model captures random 
variation in the data. 



Regression Selection Procedures
• Backward

◦ Start with all predictors in the model, remove the predictor with the highest p-
value, continue until all p-values are < p-critical (e.g., 0.05).

• Forward
◦ Start with predictor with lowest p-value (and < p-critical), check each remaining 

predictor to find adjusted p-value and add predictor with smallest p-value. 
Continue until no more predictors reach p < p-critical.

• Stepwise
◦ Combines backward and forward. Start as in forward with predictor with lowest p-

value, add predictor with lowest adjusted p-value. Now go back, and check original 
predictor, if p > p-crit for this predictor, then remove. After each new predictor is 
added, go back and check every other predictor in the model.

* Can also do this based on other fit statistics (e.g., AIC, BIC, adjusted R2)

Steyerberg, Ewout W. Clinical prediction models. Springer International Publishing, 2019.
Hosmer DW, Lemeshow S: Applied Logistic Regression. 2000, New York: Wiley



Regression Selection Procedures
• Best Subsets

◦ Check every possible subset of variables, and choose the subset with 
the best fit (e.g., based on set criteria like AIC, BIC, R2)

Steyerberg, Ewout W. Clinical prediction models. Springer International Publishing, 2019.
Hosmer DW, Lemeshow S: Applied Logistic Regression. 2000, New York: Wiley



Regression Selection Procedures
•Concerns

◦ Best subsets – How many combinations to check? 5 predictors = 31 
subsets, 25 predictors > 30 million subsets (2 # predictors – 1)

◦ Backward selection – convergence issues

◦ Overfitting/issues with multiple testing 

◦ Very sensitive to the order that variables are added

Steyerberg EW et al. "Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis." Journal of clinical epidemiology. 1999.
Harrell FE et al. "Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors." Statistics in medicine. 1996. P.C. 
Sainani, Kristin L. "Multivariate regression: the pitfalls of automated variable selection." PM&R 5.9 (2013): 791-794.



Penalized Regression 
• Also referred to as shrinkage or regularization methods

◦ There is a penalty for complexity
◦ Regression coefficients are “shrunk” towards zero to avoid overfitting  less variance, 

potentially more bias

•LASSO (Least Absolute Shrinkage and Selection Operator.)
◦ Sum of the absolute values of the regression coefficients must be less than some constant
◦ May force some of the coefficient estimates to be exactly equal to zero (i.e., can work as variable 

selection)
◦ Typically performs better when there are few important predictors

•Ridge
◦ Sum of the squares of the regression coefficients must be less than some constant
◦ Shrinks the coefficients towards zero, but it will not set any of them exactly to zero  include all 

the predictors in the final model
◦ Typically performs better when all predictors are important

•Elastic net  Combination of ridge and lasso
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., Vol. 58, No. 1, pages 267-288).
Harrell Jr, Frank E. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer, 2015.



Cross-Validation
•Cross-validation: re-sampling procedure to estimate how 
the model might perform out of sample
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Cross-Validation
• With our full data with out of sample predictions we can

◦ Assess the performance of our model by calculating cross-validated fit 
statistics (e.g., AUC)

◦ Choose the penalty for penalized regression that minimizes residuals (or 
whatever fit statistic we choose)

◦ Assess multiple models, and choose the one with the best fit
◦ Choose a weighted combination of models

• Important to assess overfitting, especially when we do not have 
a validation sample
◦ Optimism: our model is always going to perform better on the data on 

which is was trained vs. data it hasn’t seen



Two Continuous Predictors
CTXII > 0.1

MMP3 > -0.75MMP3 > 0
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Classification and Regression Trees 
(CART)
• Recursive partitioning: the data are partitioned into subsets –
there is no regression equation (non-parametric)

• Every value of a predictor is considered as a potential split

• Optimal split is based on minimizing incorrect classifications
◦ where split is made is called the node

• Terminal Node: no further splits
◦ Stop splitting based on: number of observations, lack of improvement, tree 

depth

• Pruning: removing sections of the tree (nodes) to avoid overfitting



Classification and Regression Trees 
(CART)

Example: 

Price LL et al. "Role of Magnetic 
Resonance Imaging in Classifying 
Individuals Who Will Develop 
Accelerated Radiographic Knee 
Osteoarthritis." Journal of 
Orthopaedic Research® 37.11 
(2019): 2420-2428.



Classification and Regression Trees 
(CART)
• Explicitly models 
interactions between 
variables (effect of 
variable b depends on 
level of variable a)

• Results are intuitive and 
clinically interpretable –
clear rules



Classification and Regression Trees 
(CART)
• Concerns with CART: 

◦ “greedy approach” 
overfitting 

◦ Highly dependent on input 
data – small changes can 
lead to different trees
◦ Especially dependent on the 

first split



Ensemble Machine Learning
• Combines the information from multiple models to improve 
model performance
◦ Develop many prediction models
◦ Combine to form a composite predictor

• Bagging (Bootstrap Aggregation): draw a bootstrap sample 
from the data, fit a model to this sample. Repeat. Average 
predicted values across all bootstrapped samples. 

•Boosting: way to improve so-called “weak learners.” sequential 
technique – focus each iteration on the incorrectly classified 
data points from the previous iteration

Rose, Sherri. "Mortality risk score prediction in an elderly population using machine learning." American journal of epidemiology 177.5 (2013): 443-452.
Hastie, Tibshirani, Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009
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Random Forest
• Tree-based approach (like CART) with bagging

• Draw a random sample of subjects and a random sample of 
predictors and then create decision tree

• Average across trees

• Pros: improved prediction, more stable

• Cons: interpretability – we can use measures to assess variable 
importance, but there is no clear measure to assess the 
association between predictors and outcome (e.g., OR), no final 
tree



Random Forest

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz


Random Forest
SF-12 Physical Component

Advanced structural disease

Family history of KR

Riddle DL et al. "Two-year 
incidence and predictors of 
future knee arthroplasty in 
persons with symptomatic 
knee osteoarthritis: 
preliminary analysis of 
longitudinal data from the 
osteoarthritis initiative." The 
Knee 16.6 (2009): 494-500.



Super Learner
• An ensembling machine learning approach that combines 
multiple algorithms into a single algorithm. 
◦ Run many algorithms – use cross-validation to assess model 

performance

◦ Combine the models, weighting by model performance in CV 

◦ Relies on stacking (averaging across multiple different algorithms) 
rather than bagging or boosting

Rose, Sherri. "Mortality risk score prediction in an elderly population using machine learning." American journal of epidemiology 177.5 (2013): 443-452. 
Naimi, Ashley I., and Laura B. Balzer. "Stacked generalization: an introduction to super learning." European journal of epidemiology 33.5 (2018): 459-464.
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Rose, Sherri. "Mortality risk score prediction in an elderly population using machine learning." American journal of epidemiology 177.5 (2013): 443-452. 
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Deep Learning



Deep Learning
•Example: Tiulpin, Aleksei, et al. 
"Multimodal machine learning-
based knee osteoarthritis 
progression prediction from 
plain radiographs and clinical 
data." Scientific Reports 9.1 
(2019): 1-11.  directly utilizes 
raw radiographic data



Statistical Modeling vs. Machine Learning
Statistical Modeling Machine Learning

Draws population inferences from a sample Finds generalizable predictive patterns

Overall prediction with an interpretable model is 
the goal, need to understand associations between 
variables and outcomes. 
“Not just to predict, but to understand” – Dr. 
Bhramar Mukherjee

Overall prediction is the goal, without being able to 
succinctly describe the impact of any one variable

Low dimensions, small sample size High dimensions (p>n)

Formal assessment of uncertainty Flexibility: many complex relationships between 
predictors/interactions

https://www.fharrell.com/post/stat-ml/#fn:There-is-an-inte
Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat Methods 15, 233–234 (2018).
https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

https://www.fharrell.com/post/stat-ml/#fn:There-is-an-inte
https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/
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