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A Little About Me
› Trained as a health services researcher & health 

economist
› Research focus: identifying high value services & systems 

of care for persons with complex chronic illness
› Answering questions about value often entails using 

secondary data and observational study designs



Presentation Outline
1. Unmeasured confounding in observational studies –

what’s the problem, and why is it a problem?
2. 1 potential solution: instrumental variables
3. Example of a study that used instrumental variables to 

address unmeasured confounding
4. A few words about other solutions
5. Summary



Quick Poll Question
› Which type of study design to do you most typically use in 

your research?
– Randomized controlled trial (RCT)
– Observational study
– Both



Estimating Causal Effects
› Regardless of your preferred study design, a common aim 

is estimating a causal effect
– What is the effect of [treatment] on [outcome]?

› RCTs are ideal for estimating causal effects but not always 
possible

› Alternative approach: regression analysis using 
observational data…
– …if we can adequately address 1 key problem: unmeasured 

confounding



Linear Regression Model
Yi  = β0 + β1Xi + ei

› Y: outcome variable of interest
› X: explanatory variable of interest
› e: error term

– e contains any other factors besides X that determine the value of Y

› β1: the change in Y associated with a unit change in X

› Key elements for causal effect of X on Y: 
– β1 must be an unbiased estimate
– X must be exogenous



Exogenous vs. Endogenous
› Exogenous: caused by something outside the system
› Endogenous: caused by something inside the system
› Whether a variable is exogenous or endogenous depends 

upon your conceptual model and perspective
– E.g., Medicare reimbursement amount for dialysis is exogenous to 

dialysis facilities but endogenous to the Centers for Medicare & 
Medicaid Services



What is Bias? What is an Unbiased Estimate?
› In our previous regression equation, β1 is considered a biased 

estimate of the effect of X on Y if the estimated value of β1 isn’t 
equal to the true value of β1
– Unbiased estimate is one where the estimated value = true value

› Cause of bias: 
– X is correlated with e (i.e., X is endogenous)
– Unmeasured confounder(s)
– In an observational study, these problems lead to selection bias

› The treated group and the “non-treated” group may differ in ways that will also 
affect their difference in outcomes

› Consequence of a biased estimator = incorrect estimate of 
treatment effect



Selection Bias Example
› Suppose you want to 

estimate effect of eGFR upon 
dialysis initiation on quality of 
life (QoL)

› People with more comorbid 
conditions are more likely to 
start dialysis with higher 
eGFR and more likely to have 
lower QoL

› If comorbid conditions are 
unmeasured and excluded 
from model, βG will be biased



Solving the Endogeneity Problem
› Variation in X has 2 components:

– 1 component is correlated with e
› Causes endogeneity

– Other component is not correlated with e
› “Exogenous” variation

› Need to use only the exogenous variation in X to estimate 
β1

› We need to add a variable to the regression model that 
isolates the exogenous variation in X that is uncorrelated 
with e
– That variable is called an instrumental variable or an instrument



2 Key Requirements for a Valid Instrument
› Relevance
› Exogeneity



Instrument Relevance
› An instrument (Z) must be correlated with the treatment 

variable (X)
› Variation in Z must explain variation in X
› If so, Z is “relevant”



Instrument Exogeneity
› The instrument Z must be uncorrelated with the error term 

e
› Z must also be uncorrelated with all other factors, besides 

X, that determine outcome Y
› Z doesn’t affect Y, except via X
› If these statements are all true, then Z is “exogenous”



An Intuitive Example of an Instrument
Outcomei = β0 + β1Treatmenti + ei

› Suppose treatment is assigned via a coin flip
– Heads: patient gets treatment
– Tails: patient doesn’t get treatment

› Is the coin flip a valid instrument for treatment?
– Does the coin flip affect whether a patient receives treatment? Yes, so 

it’s relevant.
– Does the coin flip directly affect the outcome? No, so it’s exogenous.
– Therefore, a coin flip is a valid instrument for treatment.

› Variation in an instrument mimics the role played by 
randomization in an RCT



What Kinds of Variables Make For Good 
Instruments?
Instrument Type Instrument Treatment -> Outcome
Distance Distance to nearest hospital with 

cardiac catheterization1
Acute myocardial infarction
(AMI) treatment -> mortality

Physician Preference Prescribing MD’s preference for 
conventional or atypical 
antipsychotics, as indicated by most
recent new Rx2

Antipsychotic medication type
-> mortality 

Geography Regional catheterization rate3 Invasive cardiac management 
-> AMI survival

Health policy Medicare geographic adjustment 
factor, used to calculate fees paid for 
breast cancer treatments4

3 early-stage breast cancer 
treatments -> 3-year post-
treatment survival 

1McClellan 1994; 2Wang 2005; 3Stukel 2007; 4Hadley 2003



Analytic Approaches When Using IVs
› 4 options

– 2 stage least squares (2SLS)
– Generalized method of moments
– 2 stage residual inclusion
– Bivariate probit with correlated errors



2SLS – 1st Stage
› Regress X on Z:

Xi = π0 + π1Zi + γi

› Predict X:
�𝑋𝑋𝑖𝑖 = �𝜋𝜋0 + �𝜋𝜋1𝑍𝑍𝑖𝑖



2SLS – 2nd Stage
› Regress Y on �𝑋𝑋:

𝑌𝑌𝑖𝑖 = 𝛽𝛽0𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖

› Estimate 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (the instrumented treatment effect)
– �𝑋𝑋 is uncorrelated with e from the original regression model    Yi  = 
β0 + β1Xi + ei

– 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is an unbiased estimate of 𝛽𝛽1



Instrumental Variable 
Example
McClellan, McNeil, & Newhouse 1994





Purpose of Paper + a Few Design Details
› To estimate the effect of 3 different acute myocardial 

infarction (AMI) treatments – cardiac catheterization, 
angioplasty, coronary artery bypass graft [CABG] – on 
mortality 4 years after AMI

› Study cohort: most Medicare beneficiaries age 65+ who 
had an AMI in 1987 but not in 1986 (n=205,021)

› Data source: Medicare claims & enrollment data
– AMI treatment could be ascertained at both individual and hospital 

levels



Analytic Problem
› Model:

𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑡𝑡𝑚𝑚𝑖𝑖 + 𝑒𝑒𝑖𝑖

› Problem: whether or not a patient receives a particular 
treatment is correlated with many unmeasured factors that 
may also affect mortality
– E.g., health status, patient or physician preferences



Endogeneity Problem #1



What Instrument to Use?
› Idea:

– Patients who live closer to hospitals that have capacity to perform 
more intensive treatments are more likely to receive those 
treatments (relevance)

– The distance a patient lives from a given hospital should be 
independent of her/his health status and mortality risk (exogeneity)

› Instrument (for intensive treatment): differential distance to 
catheterization & revascularization hospitals



What Impact Did the Instrument Have?



Results (1 of 2)

› IV estimates of the effect of catheterization on mortality are 
much smaller than estimates that didn’t account for the 
endogeneity problem



Results (2 of 2)

• Catheterization within 90 days of AMI reduces mortality by 5 percentage 
points at 1-4 years post-AMI

• Caveats:
• Validity of these results hinge on the instrument’s validity
• This is an estimate of the marginal effect of catheterization (for patients 

who wouldn’t have otherwise received treatment if they lived 
differentially far from a catheterization or revascularization hospital)

• This estimate is an upper bound of the effect of catheterization
• If C&R hospitals offer better care (e.g., more specialists) other than more 

intensive procedures, then mortality should be lower at those hospitals



Cautions about Instrumental Variables
› Weak instruments (i.e., those that are weakly correlated 

with treatment) can accentuate bias and provide unreliable 
estimates

› Rule of thumb to check if an instrument is weak:
– From 1st stage of 2SLS, compute the F-statistic testing the 

hypothesis that the instrument’s coefficient equals 0
– “Rule of Ten”: F-statistic > 10 indicates the instrument isn’t weak
– Remember that you still need a convincing argument the 

instrument is relevant; the instrument should have good face 
validity

› Assumption that the instrument is uncorrelated with error 
term in the outcome equation is untestable



Alternatives to IVs When You Have 
Unmeasured Confounding
› Difference in differences (DiD; Angrist & Pischke, 2008): 

– Using data from 2 points in time, separately calculate the 
difference in t2 and t1 outcomes within the treatment group and 
within the comparison group; the difference between those two 
differences will reflect the treatment effect, subject to assumptions

– Uses regression with period-treatment interaction term

› Prior event rate ratio (Lin & Henley, 2016)
– Analogous to DiD method for time-to-event or rate data

› Streeter et al 2017 describes other rarely used alternatives



Summary
› Instrumental variables regression is a useful approach for 

estimating causal effects when you have unmeasured 
confounding

› Valid instrument must be
– Relevant: the instrument must affect treatment
– Exogenous: the instrument must be uncorrelated with all other 

factors that may affect outcomes
› Good instruments are hard to find
› Using a weak instrument will provide meaningless results
› Beyond testing for instrument validity, must have a good 

story for why your instrument is relevant & exogenous



Health Economics Program (HEP)
› Specific services we 

offer:
– Identifying relevant 

methods or measures for 
health economic-related 
outcomes

– Expertise about extant 
datasets for economic 
evaluation

– Help with grantwriting
– Conducting health 

economic analyses
http://www.feinberg.northwestern.edu/sites/chs/research/prog
rams/healthcare-economics.html

http://www.feinberg.northwestern.edu/sites/chs/research/programs/healthcare-economics.html
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