Northwestern University Feinberg School of Medicine
Driskill Graduate Program in Life Sciences
Skip to main content

Biomedical Informatics

Research area description outlining the basics of biomedical informatics research.

Labs in This Area

 Rosemary Braun Lab

Analyzing high–throughput genomic data in the context of biological networks

Research Description

I am a computational biologist with an interest in the development of methods for integrative, systems-level analysis of high-dimensional genomic and proteomic data. These methods incorporate bioinformatics information with experimental data to characterize the networks of interactions that lead to the emergence of complex phenotypes, particularly cancers.

For more information, visit the faculty profile of Rosemary Braun, PhD, MPH.


See Dr. Braun's publications in PubMed.


Dr. Braun

 Rex Chisholm Lab

Studying molecular motors and cell motility

Research Description

Movement is a fundamental characteristic of life. Cell movement is critical for normal embryogenesis, tissue formation, wound healing and defense against infection. It is also an important factor in diseases such as cancer metastasis and birth defects. Movement of components within cells is necessary for mitosis, hormone secretion, phagocytosis and endocytosis. Molecular motors that move along microfilaments (myosin) and microtubules (dynein) power these movements. Our goal is to understand how these motors produce movement and are regulated. We wish to define their involvement in intracellular, cellular and tissue function and disease—with the long-term goal of developing therapies for the treatment of diseases caused by defects in these molecular motors.

Our work involves the manipulation of myosin and dynein function in the single celled eukaryote Dictyostelium, cultured mammalian cells and transgenic and knockout mice. Yeast two-hybrid screens to identify proteins that interact with or regulate myosin and dynein and characterization of gene expression are being used to define the pathways regulating myosin and dynein. To analyze the biological significance of myosin and dynein, we use confocal and digital microscopy of living cells, analysis of cell movement, vesicle transport and cell division. We employ biochemical techniques including heterologous expression, enzyme purification and characterization and analysis of how phosphorylation state affects physiological function. We are pursuing signal transduction studies to understand the physiologically important pathways that regulate cell motility and biophysical studies such as in vitro motility assays to understand how these molecular motors function at the molecular level.

For lab information and more, see Dr. Chisholm's faculty profile.


See Dr. Chisholm's publications on PubMed.


Contact Dr. Chisholm at 312-503-3209.

 Ramana Davuluri Lab

Translational Bioinformatics and Cancer Genomics

Research Description

Research in our lab focuses on developing informatics solutions to solve problems in biology and medicine. Current projects are focused on two closely related areas: (A) mammalian gene regulation at isoform-level and (B) isoform-level transcriptional networks in brain development and brain tumors. The overarching goal of his lab is to translate Big Data from multiple high dimensional (-omic) platforms (e.g., NextGen sequencing) to derive experimentally interpretable and testable discovery models towards genomics-based clinical decision support systems for personalized cancer therapy. Our group is developing bioassays that can rapidly identify biomarkers from human tissue and blood samples. Towards these goals, our group applies state-of-the-art statistically rigorous data-mining methods and NextGen sequencing based experimental procedures in a systems biology setting.

Our research program is interdisciplinary in nature with a complement of experimental investigation. The current projects of our laboratory are:

  1. Informatics platform for mammalian gene regulation at isoform-level
  2. Isoform-level transcriptional networks in brain development and brain tumors
  3. Molecular classification of cancers

Coupled with advances in high throughput technologies, our computational modeling work seeks to address key outstanding issues in mammalian genomics and cancer. We currently maintain online databases (e.g., MPromDb – Mammalian Promoter Database), programs for NextGen sequence analysis (e.g., IsoformEx, Isoform level gene expression estimation from RNA-seq data; TPD – Modeling Transcription Factor Binding Site Profiles from ChIP-Seq Data; NPEBseq: Differential Expression analysis based on RNA-seq data; and Data-mining methods for molecular stratification of cancers (e.g., PIGExClass – Platform-independent Isoform-level Expression based classification-system).

For more information, visit the faculty profile of Ramana Davuluri, PhD.


See Dr. Davuluri's publications in PubMed.


Research Assistant Professors:

Yingtao Bai; Hong-Jian Jin

Post-doctoral Fellows:

Segun Jung; Majoh Kandpal


Dr. Davuluri

 Al George Lab

Investigating the structure, function, pharmacology and molecular genetics of ion channels and channelopathies

George Lab

Research Description

Ion channels are ubiquitous membrane proteins that serve a variety of important physiological functions, provide targets for many types of pharmacological agents and are encoded by genes that can be the basis for inherited diseases affecting the heart, skeletal muscle and nervous system.

Dr. George's research program is focused on the structure, function, pharmacology and molecular genetics of ion channels. He is an internationally recognized leader in the field of channelopathies based on his important discoveries on inherited muscle disorders (periodic paralysis, myotonia), inherited cardiac arrhythmias (congenital long-QT syndrome) and genetic epilepsies. Dr. George’s laboratory was first to determine the functional consequences of a human cardiac sodium channel mutation associated with an inherited cardiac arrhythmia. His group has elucidated the functional and molecular consequences of several brain sodium channel mutations that cause various familial epilepsies and an inherited form of migraine. These finding have motivated pharmacological studies designed to find compounds that suppress aberrant functional behaviors caused by mutations.

Recent Findings

  • Discovery of novel, de novo mutations in human calmodulin genes responsible for early onset, life threatening cardiac arrhythmias in infants and elucidation of the biochemical and physiological consequences of the mutations.
  • Demonstration that a novel sodium channel blocker capable of preferential inhibition of persistent sodium current has potent antiepileptic effects.
  • Elucidation of the biophysical mechanism responsible for G-protein activation of a human voltage-gated sodium channel (NaV1.9) involved in pain perception.

Current Projects

  • Investigating the functional and physiological consequences of human voltage-gated sodium channel mutations responsible for either congenital cardiac arrhythmias or epilepsy.
  • Evaluating the efficacy and pharmacology of novel sodium channel blockers in mouse models of human genetic epilepsies.
  • Implementing high throughput technologies for studying genetic variability in drug metabolism.
  • Implementing automated electrophysiology as a screening platform for ion channels.

For lab information and more, see Dr. George’s faculty profile.


See Dr. George's publications on PubMed.


Contact Dr. George at 312-503-4892.

Lab Staff

Research Faculty

Alexis Demonbreun, Lynn DoglioVladimir Jovasevic, Irawati Kandela, Thomas Lukas, Franck PotetMegan Roy-PuckelwartzChristopher Thompson, Carlos Vanoye

Senior Researchers

Reshma Desai, Jean-Marc DekeyserPaula FriedmanChristine Simmons

Lab Manager

Tatiana Abramova

Postdoctoral Fellows

Thomas HolmDina Simkin

Medical Resident

Tracy Gertler

Graduate Students

Surobhi Ganguly, Lisa Wren

Technical Staff

Sneha Adusumilli

 Richard Gershon Lab

Health care outcome assessments

Research Description

Dr. Gershon is a leading expert in the application of Item Response Theory (IRT) in individualized and large scale assessments. He has developed item banks and Computerized Adaptive Testing (CAT) for educational, clinical, and health applications - including cognitive, emotional, and motor applications. He is currently principal investigator on these projects with the NIH: NIH Toolbox for the Assessment of Neurological Function and Behavior, the NIH Roadmap Patient – Reporting Outcomes Measurement Information System (PROMIS) Technical Center, the National Institutes on Aging Genetic Norming project, and the National Children's Study: Vanguard Study(South ROC). He is also co-investigator and measurement development expert on numerous smaller projects including the NINDS sponsored project “Quality of Life Outcomes in Neurological Disorders” (Neuro-QOL), and the cancer-specific supplement to PROMIS.

For more information visit the faculty profile of Rich Gershon, PhD.


See Dr. Gershon's publications in PubMed.


Dr. Gershon

 Lifang Hou Lab

Environmental, genetic and epigenetic risk factors for disease

Research Description

Dr. Hou’s research interest lies in integrating traditional epidemiologic methods with the ever-advancing molecular techniques in multi-disciplinary research focusing on identifying key molecular markers and understanding their potential impact on disease etiology, detection and prevention.

Dr. Hou’s major research efforts to date have focused on two areas: 1) identification of risk factors that may cause chronic diseases; and 2) identification of biomarkers that serve as indicators of an individual’s past exposure to disease risk factors and/or predict future disease risks and/or prognosis. The environmental/lifestyle risk factors that Dr. Hou has studied include air pollution, pesticides, overweight, physical inactivity and reproductive factors in relation to chronic diseases. The biomarkers that Dr. Hou has investigated include genetic factors (i.e., polymorphisms, telomere length shortening, mitochondria DNA copy number variations) and epigenetic factors (i.e., DNA methylation, histone modifications and microRNA profiling). Her over-arching research goal is to understand the biological mechanisms linking environmental risk factors with subclinical or clinical disease development to ultimately lead to development of effective strategies for prevention of chronic diseases.

In addition to being a PI of several NIH funded grants, Dr. Hou is the co-director and Co-PI of the Northwestern Consortium for Early Phase Cancer Prevention Trials of the Division of Cancer Prevention (DCP) Consortia, National Cancer Institute.

For more information visit the faculty profile of Lifang Hou, MD, PhD.


See Dr. Hou's publications in PubMed.


Dr. Hou

 Zhe Ji Lab

Dissecting the regulation of gene transcription and RNA translation underlying oncogenic processes.

Research Description

Cancer happens through accumulated genetic mutations and epigenetic alternation in normal cells. With the advances of genomic technologies, we now can precisely characterize the genome-wide alternations of gene expression underlying oncogenic processes in a cost-effective and unbiased manner. My lab will use the combined experimental genomic technologies and computational modeling to examine the regulation of gene transcription and RNA translation during steps of oncogenesis. We aim at revealing novel cancer therapeutic targets and strategies for precision medicine and immunotherapy.

Current Projects

Currently, we are working on the following projects.

  • Characterizing the transcriptional regulatory circuits mediating inflammation in the cancer microenvironment.
  • Examining the genome-wide regulation of RNA translation in cancers.
  • Defining the functional roles of non-canonical translation in lncRNAs, pseudogenes and 5’UTRs in cancers.

For lab information and more, see Dr. Ji's faculty profile.


See Dr. Ji's publications on PubMed.


Contact Dr. Ji at 312-503-2187.

Lab Staff

Postdoctoral Fellows

Qianru Li, Hongbin Wang, Xin Wang, Haiwang Yang

 Donald Lloyd-Jones Lab

Cardiovascular disease epidemiology, risk estimation and prevention

Research Description

Dr. Lloyd-Jones’ research interests lie in cardiovascular disease epidemiology, risk estimation and prevention. A main focus of his research has been investigation of the lifetime risks for various cardiovascular diseases and factors that modify those risks. Other areas of interest include cardiovascular disease risk estimation using novel biomarkers, imaging of subclinical atherosclerosis and the epidemiology of hypertension. His clinical and teaching interests lie in general cardiology with a focus on prevention.

For more information, visit the faculty profile of Donald Lloyd-Jones, MD, ScM.


Email Dr. Lloyd-Jones

Phone 312-908-1718

 Elizabeth McNally Lab

Genetic mechanisms responsible for inherited human diseases

Research Description

My laboratory studies genetic mechanisms responsible for inherited human diseases including heart failure, cardiomyopathy, muscular dystrophy, arrhythmias, aortic aneurysms. Working with individuals and families, we are defining the genetic mutations that cause these disorders. By establishing models for these disorders, we can now begin to develop and test new therapies, including genetic correction and gene editing.

For lab information and more, see Dr. McNally's faculty profile or visit the McNally Laboratory site.


See Dr. McNally's publications on PubMed.


Email Dr. McNally

Phone  312-503-5600

 David C. Mohr Lab

Design, developing, evaluating, and implementing technology-assisted behavioral and psychological interventions.

Research Description

David C. Mohr, PhD, is the Director of the Northwestern University Center for Behavioral Intervention Technologies (CBITs).   Dr. Mohr’s expertise is in the design, development, evaluation, and implementation of technology-assisted behavioral and psychological interventions. These technologies use mobile phones, tablets, computers, and sensors to support patient behaviors related to health, mental health, and wellness.  In the area of development, Dr. Mohr’s primary expertise is in designing applications that can be deployed to phones and desktop computers aimed at treating mental health disorders. While many of these have been relatively standard applications, he is also developing methods of harnessing sensor data from the phone to identify user states that are relevant to the treatment of depression.  A second area of development focuses on developing applications aimed at improving adherence to medications and medical regimens. These applications are being deployed in General Internal Medicine, Community Health Centers, and Psychiatry.  Finally, Dr. Mohr examines methods of implementing behavioral intervention technologies in the healthcare settings.  In general, behavioral intervention technologies are not effective in improving symptoms when delivered as standalone treatments. Dr. Mohr has developed and evaluated methods of providing low intensity coaching support to enhance the use and effectiveness of behavioral intervention technologies. These coaching models can use health professionals, lay people, and  peers. 

He is also interested in the relationship between stress, depression and inflammation, particularly in multiple sclerosis.

For more information visit the faculty profile of David Mohr, PhD.


See Dr. Mohr's publications in PubMed.


Dr. Mohr

 Jeffrey Savas Lab

Research in the Savas lab is aimed at accelerating our understanding of the proteins and proteomes responsible for neurodevelopmental and neurodegenerative diseases.

Research Description

We use biochemistry with discovery-based mass spectrometry to identify the protein perturbations which drive synaptopathies and proteinopathies. Groups of perturbed proteins serve as pathway beacons which we subsequently characterizes in hopes of finding new pathogenic mechanisms and potential future therapeutic targets.

For more information view the faculty profile of Jeffrey Savas, PhD or the Savas Lab website.


Please see Dr. Savas' publications on PubMed.

Contact Information

Jeffrey N Savas, PhD
Assistant Professor in Neurology

Lab Staff

Postdoctoral Fellows

Yi-Zhi Wang, PhD

Technical Staff

Laith Ali

Kira Alia Cozzolino

Sam Smukowski

Graduate Students

Undergraduate Students

Lap-Heng Keung

 Jonathan Silverberg Lab


Research Description

Dr. Silverberg specializes in dermatoepidemiology with a focus on comorbidities and quality of life. His research interests include the patient- and population-based burden of inflammatory skin disease, particularly atopic dermatitis (eczema), contact dermatitis and photosensitive disorders.


1 - identify novel modifiable risk factors for inflammatory skin diseases and develop clinical and epidemiological interventions to prevent these disorders throughout the US population. This includes improving the understanding of the genetics and gene-environment interactions in adult atopic dermatitis. 

2 - develop improved assessments for patients with chronic itch that can help us understand how best to reduce the itch, which is so life altering for patients. 

3 - work toward improving the understanding of the direct and indirect burden of inflammatory skin diseases, including their relationship with other health conditions, such as cardiovascular disease.

In 2014, Dr. Silverberg founded Northwestern Medicine’s Multidisciplinary Eczema Center, and as its director, he has been able to advance research and test cutting-edge therapeutic approaches.


See Dr. Silverberg's publications on PubMed.


Email Dr. SIlverberg


 Bonnie J Spring Lab

Behavioral risk ractors

Research Description

My laboratory conducts research on behavioral risk factors (obesity, poor quality diet, physical inactivity, tobacco use). We also develop cutting-edge technologies that support self-regulation and healthy behavior change. Finally, we create on-line learning tools to support skill mastery in evidence-based practice and team science.

For more information, visit the faculty profile of Bonnie Spring, PhD. or the Spring lab site.


View Dr. Spring's publications at PubMed


Email Dr. Spring

Phone 312-908-2293

 Justin B. Starren Lab

Health care computing

Research Description

My current research focuses on new ways to make health care computing more useful. This includes developing intuitive, novel Human Computer Interfaces (HCI) for health care, including working on the design of graphical icons for clinical applications, addressing data overload for clinicians and issues in affective computing. A related line of research is developing methods for the integration of clinic research computing into clinical care.

For more information, visit the faculty profile of Justin Starren, MD/PhD or the Starren lab site.


View Dr. Starren's publications at PubMed


Email Dr. Starren

 Deborah Winter Lab

Computational immunology - Using genomic approaches to study rheumatic disease.

Research Description

The goal of the Winter Lab of Functional Genomics is to apply genomic approaches to study rheumatic disease. Led by Dr. Deborah Winter, a computational immunologist, we employ the latest technologies for assays, such as RNA-seq, ChIP-seq, ATAC-seq and single cell expression, to profile the transcriptional and epigenomic profiles of immune cells in health and disease. Our goal is to define the underlying regulatory networks and understanding how they respond to challenge, illness and injury. We are particularly interested in the role of macrophages in diseases such as scleroderma, rheumatoid arthritis and lupus. Previous research has addressed the impact of the tissue environment on resident macrophages and the role of microglia, CNS-resident macrophages, in brain development. Our research combines molecular and systems biology, biotechnology, clinical applications and computer science. We use both mouse models and patient samples to help us understand and test different systems. We are committed to high standards of analysis and are continually updating and training in innovative computational techniques. We are currently recruiting highly motivated individuals to join the lab.

For more information, visit the faculty profile of Dr. Winter.


View Dr. Winter's publications at PubMed

Contact Us

Contact Dr. Winter at  312-503-0535 or by email.

 Wei Zhang Lab

Genetics and epigenetics of complex traits including risks for common diseases and drug response

Dr. Zhang is particularly interested in using high throughput technologies (e.g., microarray, next generation sequencing) and systems biology approaches to study the genetics of complex traits or phenotypes such as the risks of common diseases (e.g., cancer and lung disease), individual drug response and gene expression. Dr. Zhang is also interested in building bioinformatic databases that aim to provide user friendly access to primary data from pharmacogenomic and genome-wide association studies (GWAS). An on-going research interest of Dr. Zhang’s is the mapping of expression quantitative trait loci (eQTLs) in sarcoidosis and sickle cell disease, as well as the impact of eQTL mapping on the prioritization of GWAS results form these complex diseases.

For more information, visit Dr. Zhang's Faculty Profile page.


Email Dr. Zhang

Phone 312-503-1040

Back to top

Follow DGP on