M Northwestern Medicine[®]

Feinberg School of Medicine

Wear it Well: Data Analysis for Wearable Devices

Statistically Speaking Lecture Series February 13, 2024

> Margaret Banker, PhD Assistant Professor Division of Biostatistics Department of Preventive Medicine Communication

Morthwestern Medicine[®]

Feinberg School of Medicine

Biostatistics Collaboration Center (BCC) Who We Are

Biostatistics Collaboration Center

Mission: to support investigators at FSM in the conduct of high-quality, innovative health-related research by providing expertise in biostatistics, statistical programming, and data management.

Cancer-related biostatistics needs \rightarrow RHLCCC's Quantitative Data Sciences Core (QDSC) Multi-site data coordinating \rightarrow NUDACC (NU Data Analysis & Coordinating Center)

Biostatistics Collaboration Center

- 13 PhD Faculty Statisticians
- 9 MS Statistical Analysts
- > 300 Research Projects (Annually)
- > 75 Grant Proposals (Annually)

What can we do?

Many areas of expertise, including:

- Bayesian Methods
- Big Data
- Bioinformatics
- Causal Inference
- Clinical Trials
- Database Design
- Genomics
- Longitudinal Data
- Machine Learning
- Missing Data
- Reproducibility
- Statistical Genetics
- Survival Analysis
- Wearable Device Data

Many types of software, including:

Morthwestern Medicine[®] Feinberg School of Medicine

Come talk to us for an hour – we can learn about your work and how we might be able to help. **It's covered** by the FSM Office for Research, and the **wait is not long**!

Writing a grant?

- ✓ Power/sample size
- ✓ Statistical analysis plan
- ✓ Co-Investigator

Help with analysis? Constructing a database?

- ✓ Develop statistical analysis plan (no cost)
- ✓ Hourly charge for analysis (\$145 or \$175/hour)

Request an Appointment here!

M Northwestern Medicine[®] Feinberg School of Medicine https://www.feinberg.northwestern.edu/sites/bcc/index.html

Morthwestern Medicine[®]

Feinberg School of Medicine

Wearable Devices What Are They?

Wearing What? Personal Wearable Devices

- Automatic data collection in high frequency
- Track physiological variables and clinical symptoms outside of clinical environment
- Non-invasive and convenient
- Help MD and patients deliver better decisions and health care
- Increasingly used in health research
- Inherent data challenges

M Northwestern Medicine[®]

Feinberg School of Medicine

Source: Yono Lab Earbud Source: Glucose Monitoring Image

Where to Wear?

M Northwestern Medicine® Feinberg School of Medicine

Wear for what?

Calories Burn

Wear for what?

Morthwestern Medicine[®] Feinberg School of Medicine

Blood Oxygen Level

Wear for what?

M Northwestern Medicine[®]

Feinberg School of Medicine

Activity Monitoring

Sleep Tracking

Physical Health Monitoring

Behavioral Monitoring

Source: Medication Adherence Cartoon Source: Food Tracking Image

M Northwestern Medicine* Feinberg School of Medicine

Wear for what?

SKIN

Morthwestern Medicine[®] Feinberg School of Medicine

Source: Cartoon

Morthwestern Medicine[®]

Feinberg School of Medicine

Wearable Device Data

Cleaning/Processing/Summary Metrics

Processed Data

Data Analysis

Processed Data

Data Analysis

Processed Data

Data Analysis

Wearable Device Example: Accelerometers

- Capture continuous measures of **objective** activity
- Detects acceleration in 3 orthogonal planes
 - Vertical (axis 1, x)
 - Horizontal (axis 2, y)
 - Perpendicular(axis 3, z)
- Considerations
 - Raw to Processed Data?
 - Sleep? Physical Activity?
 - Single summary statistics? Patterns of activity?

Raw Accelerometer Data

Accelerometer X	Accelerometer Y	Accelerometer Z
0.078	-1.008	0.051
0.078	-0.934	0.125
0.176	-0.961	-0.262
0.172	-0.957	-0.293
0.203	-0.961	-0.301
0.219	-0.949	-0.289
0.164	-0.953	-0.273
0.148	-0.957	-0.281
0.148	-0.973	-0.270
0.188	-0.953	-0.270
0.184	-0.957	-0.266
0.207	-0.973	-0.203
0.223	-0.965	-0.258
0.223	-0.961	-0.266
0.035	-0.953	-0.227
0.211	-0.992	-0.234
0.289	-0.945	-0.219
0.199	-0.973	-0.152

Note: Many data points per second Example: 60Hz devices capture 60 readings per second WGT3X-BT

Processed Accelerometer Data

Processed Intensity Measurements

- AC: Activity Count (device specific)
- **MIMS:** Monitor-Independent Movement Summary
- ENMO: Euclidean Norm Minus One
- MAD: Mean Amplitude Deviation
- Al: Activity Intensity

Kartas, Marta et al. "Comparison of Accelerometry-Based Measures of Physical Activity: Retrospective Observational Data Analysis Study", *JMIR Mhealth and uHealth, 2022*. DOI: <u>10.2196/38077</u>

Processed Accelerometer Data – from Actigraph

SOC	Granularity							
	Epoch	axis1	axis2	axis3	steps	inclineStanding	inclineSitting	inclineLying
	6/9/2022 15:00	0	0	0	0	0	0	60
	6/9/2022 15:01	500	Direction and	d AC Intensity	3	00	Orientation Va	riables
	6/9/2022 15:02	L'AR	0	0	0		60	0
	6/9/2022 15:03	0	0	0	0	0	60	0
	6/9/2022 15:04	572	901	1391	6	30	30	0
	6/9/2022 15:05	27	311	722	1	0	57	3
	6/9/2022 15:06	45	93	467	1	0	26	34
	6/9/2022 15:07	845	1293	1600	8	40	2	18
	6/9/2022 15:08	443	234	543	3	20	0	40
	6/9/2022 15:09	1008	433	1666	8	20	28	12
	6/9/2022 15:10	512	326	522	6	10	10	40
	6/9/2022 15:11	1172	1001	2226	13	50	10	0
	6/9/2022 15:12	228	212	889	1	10	18	32
	6/9/2022 15:13	219	283	552	2	10	18	32
	6/9/2022 15:14	374	164	322	5	20	17	23
(6/9/2022 15:15	689	495	1721	10	50	4	6
(6/9/2022 15:16	85	123	499	1	0	41	19
(6/9/2022 15:17	963	850	2947	7	30	0	30

. .

Activity Count (AC) Data

- Data expressed as number of "Counts" (movements) per "Epoch" (unit of time)
 - Epochs **can vary**... e.g. 10 second, one-minute, five-minute, etc.
- PA Intensity measures at each of 3 axes
 - Vertical (axis 1, x)
 - Horizontal (axis 2, y)
 - Perpendicular(axis 3, z)
 - Vector Magnitude (VM):

$$\sqrt{x^2 + y^2 + z^2}$$

We Processed Our Data! Now what?

Determining Metrics

M Northwestern Medicine[®] Feinberg School of Medicine

²⁸

Analyzing Sleep Data

Morthwestern Medicine® Feinberg School of Medicine

Bed Time

Wake Time

Sleep Duration

Sleep Timing

Sleep Variability

What Sleep Measurements do we Care About?

Morthwestern Medicine[®] Feinberg School of Medicine

Morthwestern Medicine® Feinberg School of Medicine

Where do the cutoffs come from?

Morthwestern Medicine[®] Feinberg School of Medicine

Intensity Cutpoint Classifications

- There are **many** potential published cutoff classifications
 - Validated against different subgroup populations and studies
 - Many variables affect cutoff options
- Use of cutoffs derived from population that does not align with your own study
 - Lead to incorrect or biased activity classifications

Intensity Classification Cutpoints

Minutes per Day at each Activity Level

Morthwestern Medicine[®] Feinberg School of Medicine

Intensity Classification Cutpoints

Minutes per Day at each Activity Level

Morthwestern Medicine[®]

Feinberg School of Medicine

Analyzing Your Data A few approaches

Processed Data

Processed Data

Data Analysis

No "one-size-fits-all" approach

- Statistical Analysis depends on your research question
- Examples:
 - Time from taking blood pressure medication until BP drops below a pre-specified threshold? **Survival Analysis**
 - Association of sleep duration with (continuous) cognitive outcome?
 Linear Regression
 - Effect of daily MVPA on mood over a one-week period? Longitudinal Modelling

Analysis of Wearable Device Data

Highlighted Other Approaches

Substitution Analysis

Cluster Analysis

Functional Data Analysis (FDA)

M Northwestern Medicine* Feinberg School of Medicine

- Research Question
 - What if an individual **replaces 5%** of Sedentary Behavior with Moderate-to-Vigorous Activity (MVPA)
 - Note: Different question than can be answered with standard linear regression
 - How would this substitution affect a health outcome (waist circumference)
- Results
 - Substitution associated with a reduction in waist circumference by 1.35 cm with 95% CI = (-1.91, -0.79)

Aljahdali, A et al. "Sedentary patterns and cardiometabolic risk factors in Mexican children and adolescents: analysis of longitudinal data", *International Journal of Behavioral Nutrition and Physical Activity*, 2022. DOI:<u>10.1186/s12966-022-01375-0</u>

% of Wake Time at Each Activity Level

Phenotype Clustering

Analysis of multiple accelerometer metrics

- Research question
 - Can individuals be clustered into "phenotypes" based on variables of interest from accelerometers

Phenotype Clustering

Analysis of multiple accelerometer metrics

- Assess cluster-specific subject characteristics, or "phenotypes"
 - Cluster 1:
 - Sedentary Behavior
 - Sleep Duration
 - Cluster 2:
 - **↑** Sedentary Behavior
 - \downarrow Sleep Duration
 - Cluster 3:
 - \downarrow Sedentary Behavior
 - \uparrow Sleep Duration

Banker, M and Jansen, E et al. "Associations between sleep and physical activity behavior clusters and epigenetic age acceleration in Mexican adolescents", Under Review at Medicine & Science in Sports & Exercise. 2024.

Mean Daily Sedentary Behavior

Data points as a Function rather than single value

What is Functional Data?

- Observations on subjects that you can imagine as $X_i(t_i)$ where t_i is continuous
- i.e. Data in form of functions, images, shapes

Characteristics of Functional Data

- High dimensional
- Ordered over time and space
- Recorded over a continuous domain (e.g. time)

Morthwestern Medicine*

Getting Started

Functional Data from a single subject

Note: Here, the full curve is the unit of analysis

Morthwestern Medicine[®] Feinberg School of Medicine

Getting Started

"Spaghetti Plot": Functional Data from many subjects

Morthwestern Medicine[®] Feinberg School of Medicine Example from Jeff Goldsmith short course: 46 https://jeffgoldsmith.com/ICAMPAM/shortcourse_notation.html

Getting Started

"Spaghetti Plot": Functional Data from a many subjects

Morthwestern Medicine[®] Feinberg School of Medicine

Getting Started

"Rainbow Plot": Functional Data from a many subjects

Morthwestern Medicine[®] Feinberg School of Medicine

Scalar-on-Function Regression

Notation

$$Y_i = \beta_0 + \int_T X_i(t)\beta(t)dt + \epsilon_i$$

- Y is scalar outcome of interest (single measurement) example: Health outcome of interest
- X is functional predictor/covariate example: PA intensity from accelerometer
- *β* is functional parameter we want to estimate *example: functional effect of PA intensity on health outcome*
- T is the continuous domain *example: time*

Scalar-on-Function Regression

Research Example

- Research Setup:
 - PA was monitored continuously for 7 days in older adults with mild Alzheimer's Disease (AD) and cognitively normal controls (CNC)
 - Can temporal PA profiles be used to differentiate between CNC and mild AD?
- Scalar-on-Function Regression
 - Model temporal aspects in wearable observations X_i(t) over 24 hours in a day
- Results
 - Smoothed PA profiles for CNC and AD participants suggest different activity patterns

Estimated temporal effect of diurnal PA on log odds of AD

- Functional regression coefficient $\beta(t)$

Result:

 Higher PA during morning hours (~ 10 a.m.–3 p.m.) is significantly associated with a lower odds of AD

Ghosal, Rahul et al. "Scalar on time-by-distribution regression and its application for modelling associations between daily-living physical activity and cognitive functions in Alzheimer's Disease." *Scientific Reports.* 2022.

Morthwestern Medicine® Feinberg School of Medicine

Wear it Well Ending Thoughts

I have so much **Data**!!

I have **SO MUCH** data!!

Morthwestern Medicine[®] Feinberg School of Medicine

Start Planning Early

Processing raw data is **not trivial** ... but there are some standard practices

There are **many metrics** you can glean from the continuous data ... let your research question guide your variable creation

You have **options** in data analysis ... from more standard to novel methodologies

The BCC is here to help! The earlier in the process, the better ③

Into The Unknown

