Phyllis Zee, MD, PhD, examines data in her sleep laboratory. Zee hopes to open a chrono-medicine clinic, the first of its kind in the country.

A Master of Clocks, Phyllis Zee

Studies Sleep and Chronobiology

Fly across time zones and you may experience fatigue, irritability, and nausea. This feeling of “jet lag” is a result of a misalignment of your circadian rhythms.

Phyllis C. Zee, MD, PhD, Benjamin and Virginia T. Boshes Professor of Neurology and associate director of the Center for Sleep and Circadian Biology and director of the Circadian Rhythms and Sleep Research Laboratory, studies these circadian rhythms. They regulate sleep and wake cycles as well as the timing of nearly all cellular, physiological, and behavioral processes.

“In our center we have many projects, all related to this theme that sleep and circadian timing effects every cell in your body. I think circadian function is top dog, as it influences a myriad of biological functions, including central nervous system activity, metabolism, and cardiovascular function,” Zee says. “Disruption in circadian timing has been shown to increase the risk of poor health outcomes.”

Zee hopes to develop a chronomedicine center, which would be the first of its kind in this country to apply the huge advances in circadian basic science research to the practice of medicine. Her goal is to realign biological rhythms using therapeutic approaches such as light and melatonin to improve sleep quality and the management of co-morbid medical and psychiatric disorders. The clinical center would serve patients with circadian rhythm disorders, such as shift workers who are at increased risk for physical and mental diseases, including diabetes, hypertension, and depression.

Continued on pg. 2
“When your central clock in the brain is out of synchrony with other brain regions and peripheral clocks in tissues such as the liver, pancreas, heart, kidneys, lungs, it creates the risk for cardiovascular disorders for diabetes, neurodegenerative, and other diseases,” she says. “So this clinic represents a new interdisciplinary field of medicine.”

Sleep as a Risk Factor for Disease

Zee emphasizes that sleep and circadian biology research is best approached from a cross-disciplinary perspective.

“The most important keys to the success of our research program are the strong collaborations we have developed with faculty in the departments of neurobiology, medicine, psychiatry, obstetrics and gynecology, and preventive medicine,” Zee said. “These collaborations have allowed Feinberg to be at the cutting edge of translational circadian science.”

She hopes to understand the mechanism that links sleep deficiency and circadian misalignment with factors for diabetes, hypertension, cardiovascular, and neurological disease.

Zee measures sleep and wake cycles and other circadian rhythms through questionnaires, polysomnography (used in the study of sleep), actigraphy (a method of monitoring human rest and activity cycles through wrist activity), measurement of hormones, and autonomic function.

In two population-based studies, one in collaboration with Kiang Liu, PhD, professor in preventive medicine and general internal medicine and geriatrics, and Martha Daviglus, MD, PhD, adjunct professor in preventive medicine and general internal medicine and geriatrics, and another in collaboration with William Grobman, MD, MBA, professor in obstetrics and gynecology, she will measure sleep and circadian rhythms in several thousand people—the largest studies of sleep measures her lab has ever done.

Early Riser or Night Owl

While Zee learns about sleep through population-based studies, she also analyzes the physiology of individuals. Her interests lie in how and why sleep and circadian rhythms are risk factors for weight gain and obesity.

She and collaborators Kathryn Reid, PhD, research associate professor in neurology, and Kelly Baron, PhD, instructor in neurology, conduct controlled studies in humans with different chronotypes (early-type or late-type) in the clinical research unit. The subjects spend days in the hospital as the research team records their sleep, cognitive functioning, and performance, and takes blood tests to measure hormone levels.

Through these studies, Zee and collaborators found a strong correlation between late-type people and obesity.

“If you stay up late, you will eat late, and you are more likely to eat junk food and high-carb foods. These foods then affect your brain’s regulation of appetite, and you are more likely to have a higher BMI,” says Zee.

She and her co-investigators also examine how light changes appetite, and how the timing and duration of exposure to light may contribute to weight regulation. In addition to sleep loss, Zee believes that lack of exposure to natural light during the day and the ubiquitous use of artificial light in the evening may be contributing to the obesity epidemic in children and young adults.

Sleep and Neurological Disorders

Zee also directs a clinical program that conducts approximately 3,000 sleep studies and sees more than 5,000 patients a year. She says some of her best research ideas come from her interaction with patients.

“Ten to twenty percent of the population suffers from chronic sleep disturbance,” she says. “My patients stimulate me to ask: What is the cause of this? How can we use knowledge to prevent and develop innovative effective treatments? How can we use science to solve this clinical problem? My patients really inform my science.”

Zee and her colleagues are testing non-pharmacological interventions such as exercise. In one study, her team put older adults with insomnia through a moderate intensity 16-week exercise. They found that exercise improved both objective and subjective sleep quality and overall quality of life compared to a usual care control group.

Next she will apply the recent advances in basic circadian biology to tackle neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease.

“It is a new area and a very exciting frontier, that circadian biomarkers may be early markers of neuronal dysfunction,” she said. “I have the advantage of knowing what is going on in the clinical world, and it informs what we do in the lab. I think it is the best of both worlds.”
As a child, Serdar Bulun, MD, chair of obstetrics and gynecology, wondered: If a human heart could be transplanted, what else might be possible?

With a father who instilled a passion for knowledge and a mother who inspired curiosity, it’s no great surprise that Bulun became fascinated by science. While studying medicine at Istanbul University in the early ‘80s, he became transfixed.

“I found myself intrigued by the hormone estrogen,” said Bulun, John J. Sciarra Professor in Obstetrics and Gynecology. “I was captivated by how it acts as a master regulator, with its partner hormone progesterone, to prepare the entire endometrium for implantation. On the other hand, too much estrogen causes endometrial cancer. As a third-year medical student, I made a note to myself that one day I would like to uncover how estrogen is capable of causing all of these complex actions in health and disease.”

Bulun’s contributions to the understanding of endometriosis, a disorder of the uterus, and his novel use of aromatase inhibitors to treat it, earned him a National Institutes of Health MERIT Award in 2010. During his career, Bulun’s research team has been awarded more than $40 million in funding in the areas of uterine, breast, and placental disorders, and in 2015 he will serve as president of the Society of Gynecologic Investigation.

Q&A

How do you describe your research interests?

I have broad interests in all aspects of reproductive biology including human development, functioning of specific tissues of women such as the breast, uterus, and ovary, and the effects of steroid hormones on some of these tissues. Our recent research findings have taken us to a new area of brain research including the molecular determinants of sexual behavior.

What is the ultimate goal of your work?

Estrogen and progesterone are broad master-regulators of tissues such as breast, uterus, adipose tissue, brain, and any other human tissues that one can think of. They have diverse effects on healthy and diseased tissues. For example, progesterone causes breast cancer and growth of uterine fibroids, whereas it protects against endometrial cancer.

One ultimate goal in my laboratory is to understand the mechanisms that underlie such opposite actions of estrogen and progesterone on various tissues.

How does your research advance medical science and knowledge?

Some of the diseases that we study, such as uterine fibroids and endometriosis, affect tens of millions of U.S. women. These are considered benign diseases but they have devastating symptoms such as chronic pelvic pain, excessive and irregular uterine bleeding, anemia, and recurrent pregnancy loss. They are severely understudied.

Our team solved some of the molecular puzzles in endometriosis and determined new targets for treatment, which led to the introduction of aromatase inhibitors to manage endometriosis and pelvic pain during the past decade. If one considers that the last broad class of drugs for both endometriosis and fibroids was developed in the early ‘80s, one can appreciate our contributions, at least for these two extremely common and frequently devastating diseases.

What types of collaborations are you engaged in across campus?

We are a highly collaborative group within the Department of Obstetrics and Gynecology. Several large National Institutes of Health (NIH) program projects awarded within the department underscore that very nature. Outside of the department, we collaborate with many Northwestern investigators. We worked closely with Seema Khan, MD, Chuck Clevenger, MD, PhD, Kathy Green, PhD, Jian-Jun Wei, MD, and Cara Gottardi, PhD, from the departments of surgery, pathology, and medicine to advance our programs in breast cancer and uterine fibroids.

We also collaborated successfully with investigators from the Evanston Campus. For example, several years ago we received significant help and support from Erik Sontheimer, PhD, to develop a project regarding micro-RNAs in uterine fibroids. We have also collaborated with the investigators in the Chemistry of Life Processes Institute in Evanston for protein biochemistry and drug discovery.

How is your research funded?

I can say that at some level I have built my career around NIH funding since the early 1990s. The bulk of the money that supported groundbreaking projects came from the NIH. However, I should acknowledge that seed grants provided by research societies and most importantly philanthropic orga-
Hats off to the 2013 Graduates!

The Driskill Graduate Program in the Life Sciences, Northwestern University Interdepartmental Neuroscience Program, Medical Scientist Training Program, Physical Therapy DPT-PhD, and Clinical Psychology PhD programs have begun to confer doctorate degrees to the class of 2013 at ceremonies on the Chicago and Evanston campuses, held at various times throughout the year. The faculty and staff of Northwestern University congratulate these students on their well-deserved achievement.

Students who have been profiled in these pages during their years at Feinberg linked to their web profiles.

Driskill Graduate Program (DGP)
- Nicholas Angeloni
- Maryna Bayeva (MSTP)
- Kelly Barry
- Aigerim Bizhanova
- David Brooks (MSTP)
- William Brugmann
- Latty Cahoon
- Rhoda Chang
- Jing Chen
- Bryan Copits
- Cynthia Danielson
- Anaar Eastok-Siletz (MSTP)
- William Eimer
- Sebastian Fernandez-Pol (MSTP)
- Austin Gillen
- Noe Gomez
- John Graham (MSTP)
- Boris Grin (MSTP)
- Robert Harmon
- Heather Howell
- Eneda Hoxha
- Andrew Karaba (MSTP)
- Betty Kong (MSTP)
- Xiaqing (Vanessa) Lin
- Samantha Lin
- Michelle Marchese
- Derrick McCarthy
- Lauren Reineke
- Amy Rines
- Sean Riordan
- Jacqueline Schriewer
- Mark Seeger
- Laura Sena (MSTP)
- Bhumika Sharma
- Shetha Shukair
- Julie Swartzendruber
- Aki Ueda
- Eliza Vakana
- Alexandra Vrazo
- Yvonne Wu
- Joshua Waitzman (MSTP)
- Jianing Zhang

Northwestern Interdepartmental Neuroscience Program
- Alaina Baker-Nigh
- Alexis Bario
- Mark Benton
- Oneil Bhala
- Donna Bridge
- Dilyan Dryanovski
- Faisal Fecto
- Kevin Gobeske
- Austin Graves
- Yomaya Guzman
- Brian Hitt
- Abigail Kalmbach
- Bridget McKay
- Amelia Mutso
- Emily Oby
- Rodrigo Pacifico
- Jason Pitt
- David Quach
- Rashmi Sarnaik
- Jessica Schultz
- Maya Srikanth
- Dana Strait
- Jon-Eric Vanleeuwen

Bor-Shuen Wang
- Lupeng Wang
- Rebekah Ward
- Christina Whiteus

Doctor of Physical Therapy PhD Program
- Rachel Hawe

Clinical Psychology PhD Program
- Meredith Amaya-Hodges
- Katharine Dahl
- Kristin Emanuel*
- Rebecca Gavett
- Jennifer Keller
- Lindsay Pate
- Victoria Taylor*
*Academic year 2012 graduates

Additionally, the following MSTP students received their MD degrees in 2013:
- Richard Ahn
- Hans Arora
- Sebastian Fernandez-Pol
- Romie Giby
- Rebecca Harris
- Vanderlene Kung
- Divaker Mithal
- Kristina Patterson
- Martina Pejchal
- Maya Srikanth
- Preeti Sukkar

Bulun Q&A, continued from pg. 3

izations such as Friends of Prentice, the Lynn Sage Breast Cancer Foundation, and the AVON Foundation provided us tremendous opportunities to generate preliminary data for putting together blockbuster NIH grants.

Who makes up your research team and what role does each individual play in your research?

My laboratory is like my extended family. Every scientist in the lab plays an extraordinarily important role in advancing our research mission. The key attribute to our lab is our innovative nature, our willingness to apply cutting-edge technologies to primary human cells and tissues, and our highly collaborative and collegial environment. My lab consists of junior faculty, PhD or MD post-doctoral fellows, graduate students, technicians, undergraduate, and high school students. I should say, we all have fun as we work on our projects and come up with scientific discoveries. Making scientific discovery a pleasurable experience for young scientists continues to be a major goal.
Staff Profile: Michelle Mohney
Program Assistant, Center for Genetic Medicine

Where are you originally from?
I am originally from Shorewood, Ill.

What is your educational background?
I earned a bachelor of science degree in commerce, marketing, and a minor in communication from DePaul University in Chicago. I am currently taking my first course as a “student-at-large” at the Northwestern University School of Continuing Studies.

Tell us about your professional background.
I have more than a decade of professional experience in marketing, communication, event planning, and customer service. Prior to joining Northwestern, I was the communication coordinator for Chicago Wilderness, an alliance of nearly 260 organizations working to protect and restore biodiversity in the four-state Chicago metropolitan region.

What is your role at the medical school?
I joined Northwestern University in August 2012; I am the program assistant at the Center for Genetic Medicine (CGM) and the assistant to the Center’s interim director, Peter Kopp, MD.

I coordinate CGM’s two lecture series programs: the public-facing Silverstein Lecture Series and the Richard A. Scott, MD, Lecture Series, an educational platform for the medical community of Northwestern University. I also provide support for Mouse Genetics Group lectures and annual poster competition. In addition, I manage and develop content for the CGM web site and Facebook page and write the quarterly electronic CGM newsletter.

What, if any, professional activities do you take part in?
I am a volunteer reader at Blind Service Association (BSA), a non-profit organization that provides youth and adult programs and services to people who are blind and visually impaired in the Chicagoland area. I am also a member of BSA’s associate board, marketing/outreach committee.

What is your favorite part of the job?
I thoroughly enjoy the work that I do, but my hands-down, favorite part of the job is my colleagues. I am honored to work with such an incredibly intelligent, supportive, inspiring, and fun group of colleagues and managers. I get to come to work, not have to.

► Connect with Michelle on LinkedIn

Welcome New Faculty

Kimberly Kenton, MD, MS, FACS, FACOG, joins as professor in obstetrics and gynecology- female pelvic medicine and reconstructive surgery (urogynecology) and urology, and as chief of the Division of Female Pelvic Medicine and Reconstructive Surgery.

Kenton was previously professor in the Departments of Obstetrics and Gynecology and Urology; division director of female pelvic medicine and reconstructive surgery; fellowship director, female pelvic medicine and reconstructive surgery; and residency director for obstetrics and gynecology at Loyola University Stritch School of Medicine, in Maywood, Ill. She received her Doctor of Medicine degree from Rush Medical College in Chicago, where she also completed her residency in obstetrics and gynecology. Kenton completed fellowships in female pelvic medicine and reconstructive surgery at Rush and at Loyola, and earned her Master of Science degree in clinical research design & statistical analysis from the University of Michigan, Ann Arbor.

Kenton has completed extensive research investigating interventions in women with urinary incontinence and those with pelvic organ prolapse. She has served as PI, co-PI, or investigator on 11 grants, and has worked with NIH on a number of activities, including serving as co-PI, and on the steering committee for the Urinary Incontinence Treatment Network and on multiple committees for the Pelvic Floor Disorders Network. She has authored or co-authored more than 150 papers in peer-reviewed journals.
Sponsored Research

Praveen Thumbikat, PhD
O’Connor Family Research Professor of Urology and assistant professor in Urology and Pathology

Project title: T cells in Chronic Pelvic Pain

Sponsor: National Institute of Diabetes, Digestive and Kidney Diseases

Prostatitis is the most common urologic diagnosis in men aged 50 years or younger and the third most common urologic diagnosis in men older than 50 years after benign prostate hyperplasia and prostate cancer. Category III prostatitis, or chronic pelvic pain syndrome (CPPS), is the most common prostatitis observed in medical practice, representing 90 percent of cases of prostatitis and has a prevalence rate in the general population from five to 14.2 percent. CPPS is a poorly understood entity characterized by pelvic or perineal pain, irritative voiding symptoms, and sexual dysfunction. From a clinical point of view, CPPS is sorely lacking an etiology that would allow mechanism-driven therapy.

Anecdotal evidence from patients and clinicians suggested that CPPS symptoms often initiate after a primary prostatic insult such as a bacterial infection. However, the task of showing a direct association between bacteria and CPPS has been difficult with both patients and healthy controls showing equivalent levels of bacteria in their prostates. Our team isolated a bacterial strain from the prostate of a man with chronic pelvic pain and developed an animal model that showed that the bacteria is capable of inducing chronic pelvic pain even after clearance from the prostate. The bacterial strain has proven to be a prototype for similar isolates capable of initiating pelvic pain pathogenesis.

Our studies indicate that the pain initiated by the bacteria requires an autoimmune susceptible host environment. These findings suggest a role for autoimmune mechanisms in mediating CP/CPPS. In support of this hypothesis, it has been previously demonstrated that T cells from some men with CP/CPPS react to normal prostatic proteins and IFNγ-secreting lymphocytes specific to prostatic antigens have been found in chronic prostatitis patients.

Presently CPPS is a condition where therapy is dictated by the symptoms demonstrated, and less so by any mechanistic understanding of disease initiators or pathogenesis. The proposed study will attempt to change this in three significant ways: 1. Because CPPS is regarded as a catch-all diagnosis for a number of different etiologies including neuronal, hormonal, and autoimmune, this study will develop methodology to phenotype patients for diagnosis that have an autoimmune etiology; 2. Define the mechanism of T cell trafficking to the injured prostate; and 3. Identify strategies to promote self-tolerance in the prostate. These studies are expected to result in an understanding of specific mechanisms of chronic pelvic pain in CPPS as well as identification of novel methodologies to effect pain reduction and disease resolution in CPPS patients.

More sponsored research, pg. 7

Principal Investigator Feedback Needed

Management Information Systems (MIS) seeks feedback from principal investigators (PIs) regarding research data storage needs for FY14.

To provide an estimate and request additional storage, PIs should log in to https://tix.nubic.northwestern.edu and select “Secure Data Storage Access” from the list of options.

This is an opportunity for researchers to request storage for their grant data that is secure and that addresses HIPAA issues. Investigators can contact FSMIT-policy@northwestern.edu with questions.
Sponsored Research

Richard Longnecker, PhD
Dan and Bertha Spear Research Professor in Microbiology-Immunology

Project title: Structural and Functional Studies of gp42 and HLA Class 2 in EBV Entry

Sponsor: National Institute of Allergy and Infectious Diseases

This proposal represents a close collaborative effort between the laboratories of Longnecker and Ted Jardetzky, PhD, Stanford University, focused on understanding Epstein-Barr virus (EBV) entry into target cells, and in particular, defining how receptor binding triggers fusion mediated by EBV-encoded glycoproteins.

EBV is a causative agent in endemic Burkitt’s lymphoma, Hodgkin’s lymphoma, and undifferentiated nasopharyngeal carcinoma. EBV is also recognized as an important pathogen in immunosuppressed individuals including HIV/AIDS patients, causing a variety of proliferative disorders such as immunoblastic lymphomas, oral hairy leukoplakia, and other pathologies.

Fusion of EBV with a cellular membrane minimally requires a complex of viral proteins that includes gB, gH/gL, and gp42 for B cells and gB and gH/gL for epithelial cells. In the previous funding period, we made substantial progress in understanding how EBV as well as other herpesviruses bind to and ultimately fuse with target cells. In the past funding period, we solved three key structures – gp42 alone, which allowed comparison to our previous structure of gp42 bound to the receptor HLA, gH/gL, and the post fusion form of gB. In addition, in the previous funding period, we began to identify functional domains of these key glycoproteins providing considerable momentum to our proposed studies in the new funding period.

Overall, in our two aims, we plan to elucidate how receptor binding to EBV triggers changes in viral glycoprotein interactions that ultimately result in refolding of gB and fusion of the virion envelope with a cellular membrane. Clarifying the interactions between cellular receptors and viral glycoproteins, and the steps that lead from receptor binding to membrane fusion, is essential for understanding the tropisms behind EBV associated diseases.

Seed Grants Available

Multi-Investigator Seed Grants for Feinberg investigators are still available for FY13 through the medical school.

The funds provide seed funding up to $15,000 (up to $500 to $1,000 for a retreat, and up to $14,000 for application preparation) to initiate new Multi-Investigator Program Project or Center Grant applications involving Feinberg faculty.

Learn more on the Research Office website.

NIH News

Sally Rockey, PhD, NIH deputy director for extramural research, provided updated information and rationale regarding changes to the NIH Pathway to Independence (K99/R00) awards for applications due February 12, 2014 and beyond.

NIH provided guidance about the NIH Fiscal Operations for the remainder of FY 2013 in light of the Consolidated and Further Continuing Appropriations Act, 2013. NIH is operating at a program level of $29.15 billion in FY 2013, a decrease of about five percent from FY 2012.

Rockey provided her thoughts about the budget on her blog, and has left the post open to comments.

Wondering why a new fed-wide format and a new system for progress reporting is now required for SNAP and Fellowship awards? NIH’s Office of Extramural Research has put together a one page reference on NIH’s implementation of the Research Performance Progress Report (RPPR). Investigators are encouraged to use the reference to find training materials, instruction guides, and more.

A recent Federal Register contains a proposed change to the NIH Guidelines for Research Involving Recombinant of Synthetic Nucleic Acid Molecules, intended to streamline review of certain human gene transfer trials that present a low biosafety risk. Specifically, the NIH is proposing “to remove the requirement that institutional biosafety committees (IBCs) review and approve certain human gene transfer clinical trials that use plasmids and certain attenuated, non-integrating viral vectors, provided the clinical trial follows an initial study in humans that was previously approved” by an appropriately registered IBC.
Featured Clinical Trial: Using Gene Transfer in Heart Failure

Clyde Yancy, MD
Chief, Division of Medicine-Cardiology, Magerstadt Professor, and Professor in Medicine-Cardiology and Medical Social Sciences

Clinical trial title: Phase I/II Study Ad5.hAC6 Gene Transfer for Congestive Heart Failure
Sponsor: Veterans Medical Research Foundation and the National Heart, Lung, and Blood Institute

Heart failure, a condition in which the heart can't pump enough blood to meet the body's needs, affects approximately 5.8 million Americans. The leading causes of heart failure are diseases that damage the heart, such as coronary heart disease, high blood pressure, and diabetes. Currently, heart failure has no cure. However, treatments such as medicines and lifestyle changes can help people who have the condition live longer and more active lives.

This research study is designed to determine whether gene transfer using an agent called Ad5.hAC6 (adenovirus-5 encoding human adenylyl cyclase type 6) can be given safely to patients with congestive heart failure and whether this agent may be of benefit in heart failure.

“Preclinical results indicate that gene transfer is a promising approach for increasing the function of the failing heart,” says Yancy.

Gene transfer is a technique in which genes are transferred into cells. The cells then produce the specific protein that the gene directs, in this case, a protein known as adenylyl cyclase type 6 (AC6). In this study, a modified adenovirus, engineered not to replicate or cause colds, is used to carry the gene into the heart. In extensive animal experiments, previous research showed that increased amounts of AC6 in heart cells appeared to make the heart pump more vigorously.

Men and non-pregnant women aged 18 to 80 with a history of heart failure and an implantable cardioverter-defibrillator are eligible to participate in the trial. Additional inclusion and exclusion criteria can be found at ClinicalTrials.gov. The trial, while small at this stage, is already underway at multiple academic medical centers including Northwestern.

Those interested in learning more should contact Daniel Roshevsky at 312-695-3264 or via email at droshevs@nmh.org.

Student Volunteers Seek Labs to Gain Research Experience

Investigators looking for an extra set of hands during the summer can browse a listing of student volunteers from Northwestern University and beyond who hope to gain experience working in a research lab. Many of these volunteers have undergraduate-level classroom experience and are eager to join a research team.

The students volunteered by submitting a form on the Feinberg Research Office web page. Periodically, e-mails are sent to PIs who may be interested in working with student volunteers. If you would like to receive these e-mails, please contact Nicole Mladic at n-mladic@northwestern.edu to be included on the distribution.

The Research Office encourages investigators to browse recent lists of student volunteers and reach out to those who may be a fit for your team. Links follow and open as web pages:

- Student volunteers 5-13-2013 (17 total)
- Student volunteers 2-27-2013 (4 total)
- Student volunteers 2-01-2013 (4 total)
Research in the News

Wall Street Journal May 24
Older, yes, but sharp as a tack
Emily Rogalski’s work was featured.

CNN May 18
“The Angelina effect”
John Kim was interviewed.
► Seema Khan was also quoted in the Chicago Tribune on this topic.

ABC News (National) May 17
Seven problems fixed by food
Kelly Glazer Baron was quoted.

WTTW-Chicago May 15
Breast cancer debate
Virginia Kaklamani was interviewed.

Reuters May 14
Bed rest no help for women at risk of early delivery
William Grobman’s research was featured.

Reuters May 14
Small restaurants serving big calories, salt: studies
Steven Havas’ research was featured.

Chicago Tribune May 13
Editorial: Slow down on prescription power
Joan Anzia’s editorial was featured.

USA Today May 12
Treatment offers new way to save fertility
Teresa Woodruff and Lonnie Shea were featured.

The Boston Globe May 3
Parents report more food, skin allergies in children
Peter Lio was quoted.

National Public Radio May 1
Kids and food allergies
Ruchi Gupta was interviewed.

High Impact Factor Research: April 2013

Help Feinberg Track Journals

The Feinberg Research Office regularly tracks research published by Feinberg investigators. The citations are used on web pages, in newsletters and social media, for internal reporting, and more. To more accurately track these journals, the Research Office asks that Feinberg investigators use the following institution name in the address field when publishing in peer-reviewed journals: “Northwestern University Feinberg School of Medicine.”
Funding Opportunities

Delivering Therapeutics to Residual Active HIV Reservoirs (R01)
More information

Sponsors: United States Department of Health and Human Services (HHS), National Institutes of Health (NIH)
Submission Deadline: July 24
Upper Amount: $2.92 million

Synopsis: The purpose of this opportunity is to solicit new ideas for eliminating cellular reservoirs of HIV that continue to actively produce virus in tissue compartments despite suppression of plasma viremia with antiretroviral therapy. New approaches to delivering antiretrovirals or other anti-HIV agents to these tissues or to specific cell types are needed to block virus production and infection, limit inflammation, and facilitate clearance of these reservoir cells.

Peer Reviewed Orthopaedic Research Program (PRORP), Clinical Trial Award
More information

Sponsor: United States Department of Defense (DOD)
Department of the Army, US Army Medical Research and Materiel Command (USAMRMC), Office of Congressionally Directed Medical Research Programs (CDMRP)
Submission Deadline: July 18
Upper Amount: $2.5 million, plus indirect costs

Synopsis: The award is intended to support the rapid implementation of clinical trials with the potential to have a significant impact on military combat-relevant orthopaedic injuries. The clinical trials may be designed to evaluate promising new products, pharmacologic agents (drugs or biologics), devices, clinical guidance, and/or emerging approaches and technologies. Proposed projects may range from small proof-of-concept (i.e., pilot, first in human, or Phase 0) trials to demonstrate feasibility or inform the design of more advanced trials, through large-scale trials to determine efficacy in relevant patient populations. Proof-of-concept trials should not request the maximum funding amount allowed under this program announcement/funding opportunity. All applications must propose a clinical trial addressing at least one of the FY13 PRORP Clinical Trial Award Focus Areas. PRORP challenges the scientific community to address the most significant gaps in care for the leading burden of injury and loss of fitness for military duty by funding innovative, high-impact, clinically relevant research to advance optimal treatment and rehabilitation from musculoskeletal injuries sustained during combat or combat-related activities.

View more funding opportunities

Featured Events

6.11 Research Administration Training Seminar
A free four-part seminar geared toward research administrators and staff involved in research administration. Registration required.
Date: June 11 through 20
Location: Daniel Hale Williams Auditorium (McGaw) 240 E. Huron St. (Chicago campus)
Contact: yasmeen.khan@northwestern.edu
More information

6.18 Microbiology-Immunology Seminar Series
“Memory CD8 T cell immunity to influenza virus: Issues of postage and zip code,” presented by John Harly, PhD, University of Iowa.
Date: Tuesday, June 18, Noon to 1 p.m.
Location: Lurie Research Center — Baldwin 303 E. Superior St. (Chicago campus)
Contact: sdmiller@northwestern.edu
More information

6.19 24th Annual Scientific Poster Session (RHLCCC)
The poster session will display work from students and postdoctoral fellows in Lurie Cancer Center members’ labs.
Date: Wednesday, June 19, 5 to 6:30 p.m.
Location: Lurie Research Center — Atrium 303 E. Superior St. (Chicago campus)
Contact: d-marshall4@northwestern.edu
More information

6.27 2013 ASCO Oncology Review
A comprehensive summary of the most up-to-date research and clinical data presented at ASCO’s annual meeting. ($25)
Date: Thursday, June 27, all day
Location: NMH Feinberg Pavilion, Mecklenburg Conference Room 251 E. Huron St. (Chicago campus)
Contact: cancer@northwestern.edu
More information

7.26 Advancing a Preventive Rheumatology Symposium and poster session on the prevention of knee osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, and gout.
Date: Friday, July 26, 8 a.m. to 6 p.m.
Location: Lurie Research Center — various rooms 303 E. Superior St. (Chicago campus)
Contact: ipham@northwestern.edu
More information

More events

Event organizers are encouraged to submit calendar items on Plan-It Purple for consideration. Please contact the Research Office with further questions.