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 Understanding Optimization 

 

 Univariate Decisions (non-dichotomous) with Data Uncertainty 

 Example: Nurse Shift Planning 

 

 Robust Predictive Modeling – Multivariate Decisions; Few Data Samples 

 Example: Glucose/Pyridine Concentration Predictive Modeling 

 

 Designing Networks 

 Example: Addressing Geographic Inequity in Kidney Allocation 

 

 Reverse Engineering an Underlying Mechanism – Longitudinal Data 

 Example: Gene Regulatory Networks 

 

 Multi-Objective Decision Making 

 Example: National Diabetes Budget Allocation for Prevention Programs 

 



Objective 

Constraint

s: 

Decisions 

Available Resource 

Structural Requirements 

Ambiguity in Data 

How Much? -- Quantity 

When? – Timing/Policy 

Which? – Selection 

Where? -- Locations 

How? – Mechanism Design 

Who? -- Scheduling 



Financial Input: 
 Unit Sales Price p = $18 

 Unit Purchasing Price c = $7/box 

 Discounted Sales Price (Salvage 

Value) = $5 

Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

Store forecasts 

demand and places 

order 

Selling 

Period 

Left over 

sold at 

discount 

Order 

Received 



 

 Demand uncertainty  

 An integer decision 

 A reward function 

 Decision before demand is 

realized 

 Need a systematic method for 

finding the “best decision” 



Demand 

di 

Probability  

pi 

Cumulative Probability of 

demand being this size or  

less Prob( D < d) 

400 .005 0.005 

500 .01 0.015 

600 .02 0.035 

700 .04 0.075 

800 .07 0.145 

900 .11 0.255 

1,000 .15 0.405 

1,100 .19 0.595 

1,200 .15 0.745 

1,300 .11 0.855 

1,400 .07 0.925 

1,500 .04 0.965 

1,600 .02 0.985 

1,700 .01 0.995 

1,800 .005 1 

Expected Demand = 1,100  
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For a given order quantity (q) depending on the demand we 

have different values profits! 

Profit   = Sales Revenue + Salvage Value – Purchase Price 

 

 Scenario 1: 

Assume Order Quantity q = 700, Demand d=500 

  Profit  =18 * 500 + 5 * (700-500) – 7 * 700 

   = $5,100   

 Scenario 2: 

 q = 700, d=1000 

  Profit  =18 * 700 + 5 * (0) – 7 * 700 

   = $7,700   



 

Profit(q,d) = p min(d,q) + s max(0,q-d) – c q 

Salvage Revenue Purchasing Cost 

q-d is the salvage quantity 
We can only sell minimum of 

demand and order quantity 

Sales Revenue 

Profit   = Sales Revenue + Salvage Value – Purchase Price 



 For each order quantity 

profit is a random 

variable. 

 

 We calculate expected 

value of profit 

function, which is 

random for a given 

order quantity. 

 

 We want know the 

“best” order quantity, 

i.e. one that maximizes 

expected profit! 

Order Quantity q = 700 q = 700 

Demand 

di 

Probability  

pi 

Profit Probability 

* Profit 

400 .005 3800 19 

500 .01 5100 51 

600 .02 6400 128 

700 .04 7700 308 

800 .07 7700 539 

900 .11 7700 847 

1,000 .15 7700 1155 

1,100 .19 7700 1463 

1,200 .15 7700 1155 

1,300 .11 7700 847 

1,400 .07 7700 539 

1,500 .04 7700 308 

1,600 .02 7700 154 

1,700 .01 7700 77 

1,800 .005 7700 38.5 

Expected Value of Profit 7628.5 
 

 



Order 

Quantity 

Expected 

Profit 

400 $ 4,400 

500 $ 5,494 

600 $ 6,574 

700 $ 7,628 

800 $ 8,631 

900 $ 9,542 

1,000 $ 10,311 

1,100 $ 10,884 

1,200 $ 11,211 

1,300 $ 11,342 

1,400 $ 11,331 

1,500 $ 11,228 

1,600 $ 11,074 

1,700 $ 10,894 

1,800 $ 10,700 
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 At optimum: Expected cost of lost 

sales due to under stocking =  

Expected cost of overstocking 



Situation: Need to staff a shift cost-effectively while not 

compromising patient safety 

Common Practice: Staff with a mix of permanent and 

temporary (agency or float) nurses 

Question: How many permanent nurses to use? 

 

 

 

 

An Approach: 

“Cost” :=  the per shift salary of a permanent RN 

“Stock-Out Price” :=  daily per shift salary of a temporary RN 

“Salvage Value” := benefit of having an extra permanent RN 

 
Total Cost = Regular staffing cost + under staffing costs  + overstaffing costs 

“Distribution-Robust Newsvendor Models for Shift Nurse Demand Estimation”, Ashley Davis, Sanjay Mehrotra, Mark Daskin and Jane Holl 

(under review Asia Pacific Journal of Operations Research) 

 



“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh, 

Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010 

 

Prediction 



Question: How to predict true concentrations using limited 

calibration data? 

 

Problem: Calibration data is noisy and system is over 

determined. 

 

Current Practice: Using Partial Least-squares from Statistics 

which is meant to filter noise and give prediction. 

 

Alternative Approach: Build Robust Least-squares based 

optimization model 

 

 

 

 

 

 

 

“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh, 

Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010 

 



Enhanced Raman Data
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Calibration 

[c]g=10, 20, 40, 60, 100, 150, 250, 350, 450 mg/dL 

Validation 

[c]g=15, 50, 80,120, 200, 300 mg/dL 

10 spectra at each concentration, baseline corrected, normalized 

“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh, 

Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010 

 



Need to 

find a 

Linear 

Predictive 

Estimator 

Independent variable(s) 

D
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Independent variable(s) 



min
1 ,..., n

x
u   jx j

0

j1

n


2



y u :  jy j
j1

n



Ordinary Least-Square Robust Least-Square/Optimization 



y lo
*  min  j y j

j1

n





subject to xu   jx j
j1

n


2

 z



x j  U j ,   j 1,...,n



 j 1,   j  0
j1

n

 Uncertainty Set 



“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh, 

Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010 

 

True value is out of prediction 

interval in 12/15 times.  

True value is out of prediction 

interval in 4/15 times.  



Actual 

concentration 

Robust optimization 

(RO) prediction 

range 

Partial least squares (PLS) prediction – 99% prediction interval 

Bootstrap method Faber 96 method Serneels method Phatak method 

Pyridine concentrations (% v/v) 
5 3.14 – 8.66/3.97 -11.81 – -6.03/-8.92* -11.63 – -6.21/-8.92* -13.38 – -4.46/-8.92* -11.63 – -6.21/-8.92* 

10 8.6 – 17.37/8.87 -0.52 – 4.48/1.98* -0.49 – 4.45/1.98* -0.62 – 4.58/1.98* -0.49 – 4.45/1.98* 

15 14.3 – 19.85/17.66# 10.41 – 15.32/12.87 10.42 – 15.31/12.87 10.41 – 15.32/12.87 10.42 – 15.31/12.87 

25 24.96 – 26.7/25.87 25.08 – 29.90/27.49* 25.09 – 29.90/27.49* 24.97 – 30.01/27.49 25.09 – 29.90/27.49* 

30 30.19 – 32.57/31.47* 33.18 – 38.08/35.63* 33.21 – 38.05/35.63* 32.89 – 38.36/35.63* 33.21 – 38.05/35.63* 

35 35.75 – 36.88/36.16* 35.27 – 40.09/37.68* 35.27 – 40.08/37.68* 35.24 – 40.11/37.68* 35.27 – 40.08/37.68* 

45 44.32 – 48.64/44.98 40.15 – 45.30/42.72 40.27 – 45.18/42.72 39.55 – 45.90/42.72 40.27 – 45.18/42.72 

50 47.47 – 54.64/50.24 44.41 – 49.60/47.01* 44.41 – 49.60/47.01* 43.07 – 50.94/47.01 44.41 – 49.60/47.01* 

55 52.62 – 59.35/54.85 49.91 – 54.97/52.44* 50.01 – 54.87/52.44* 49.60 – 55.28/52.44 50.01 – 54.87/52.44* 

65 61.65 – 67.98/65.47 59.48 – 64.55/62.02* 59.58 – 64.45/62.02* 59.07 – 64.96/62.02* 59.58 – 64.45/62.02* 

70 68.08 – 75.62/71.93 65.43 – 70.80/68.11 65.62 – 70.60/68.11 65.40 – 70.83/68.11 65.62 – 70.60/68.11 

75 71.96 – 77.61/75.43 69.64 – 74.66/72.15* 69.75 – 74.54/72.15* 69.59 – 74.70/72.15* 69.75 – 74.54/72.15* 

85 80.52 – 85.66/83.25 79.58 – 84.90/82.24* 79.82 – 84.66/82.24* 79.44 – 85.03/82.24 79.82 – 84.66/82.24* 

90 86.50 – 89.31/87.2* 83.79 – 88.85/86.32* 83.89 – 88.74/86.32* 83.43 – 89.21/86.32* 83.89 – 88.74/86.32* 

95 90.08 – 93.41/91.16* 88.08 – 93.06/90.57* 88.13 – 93.00/90.57* 87.82 – 93.31/90.57* 88.13 – 93.00/90.57* 

Mean Range 4.38 5.1 4.93 5.84 4.93 

Relative error 0.81 2.04 2.12 2.95 2.12 

RMSEP 1.7 5.1 5.1 5.1 5.1 
* indicates when actual value is not included in prediction range or interval 

# coefficients initialized to values determined by least squares solution, for all other samples coefficients were initialized to 0.1 



Classification Recognition Clustering 
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DSA 

≈3.21 years! 

2000-2009 Median Waiting Time Variability 

If you live in… 

 

IL: 2.7 years    vs   WI: 1.4 years 

NY: 3.0 years   vs   PA: 1.6 years  

In Collaboration with: 

Ashley E Davis, Mark S Daskin, Daniela P Ladner, John J Friedewald, Anton I Skaro, and Michael 

M Abecassis,  
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Waitlist Transplants

Who deserves a transplant? 

Ratio = 0.22 

Ratio = 0.17 

Ratio: Transplanted patients relative to waitlisted patients that year 



• Created by the National Organ Transplant Act in 1984 
• Facilitate all Organ Donation and Transplantation in the US 

United Network for Organ Sharing (UNOS) 

UNOS Regions [11] UNOS Donor Service Areas (DSA) [58] 



“Local” 

“Regional” 

Current Geographic Kidney Allocation: 

Local – Regional – National 

“National” 



Actual 2009 DSA “Good Kidney” Sharing 

Local: 76%     Regional: 8%     National: 16% 



Proposed KSHARE Sharing Strategy 

DSA DSA 

DSA DSA 

DSA 

?? 

?? ?? 

?? 

?? 



Assumptions 

1. All patients treated the 

same 

2. All kidneys accepted 

as optimal results 

dictate 

 

Objectives 

• Minimize DSA Transplant Rate Variability 

• 𝑟𝑎𝑡𝑒𝐷𝑆𝐴 =
𝐾𝑖𝑑𝑛𝑒𝑦 𝑇𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝐷𝑆𝐴

𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑆𝐴
 

• Equitable by the Institute of Medicine 

• Maintain current local allocation 

• 10 year phase-in with minimal: 

• DSA Sharing Partnerships 

• Changes to Yearly Sharing Strategy 

 

KSHARE Optimization Model 



KSHARE Inputs 

• Sets 

• I : Set of all DSAs in the Continental US 

• DSA(i): Set of Feasible Sharing DSAs for DSA i, including i 

• Parameters 

• w(i): DSA i Waitlist on Jan 1, 2000 

• g(i,t): DSA i Waitlist Registrations – Non-Transplant Removals in Year 200t  

• maxTR, minTR: Limits on transplant rate range to be attained by 2009 

• l(i): Yearly percentage of locally allocated kidneys in DSA i  

• s(i,t): DSA i kidney procurement in year 200t   

• M >>0, T = 10 years, 𝜑 = 10−8 (scaling parameter)  

• Variables 

– A(i,j,t): Kidneys allocated from DSA i to DSA j in year 200t 

– WL(i,t): DSA i Waitlist size on January 1st , 200t  

– TX(i,t): DSA i total kidney transplants in year 200t 

– SP(i,j): equals 1 if DSA i ever shares kidneys with DSA j 

– FS(i,j,t): Percent of DSA i procurement allocated to DSA j in year 200t 

– maxFS(i,j), minFS(i,j): Max/Min annually percent of DSA i kidneys allocated to DSA j 



KSHARE Formulation 

Initialize Waitlist 

Update Waitlist Annually 

Calculate Total Yearly Transplants 

Meet local allocation levels 

Allocate all procured kidneys 

Transplant rate in acceptable range 

Establish Sharing Partnerships 

Calculate Yearly Sharing Strategy 

Range in yearly sharing strategies 

Minimize Sharing 

Partnerships and Variation in 

Yearly Sharing Strategy 



KSHARE Formulation 



Effect of Sharing Radius 

DSA Transplant 

Rate Statistic 

Actual 

2009 

Feasible Sharing Radius, miles 

370 450 500 600 900 1,200 1,500 2,700 

Min Rate (%) 3.0 4.3 4.5 4.6 5.0 5.8 6.3 6.5 6.6 

Max Rate (%) 30.0 30.0 15.0 12.5 12.5 12.5 12.5 12.4 12.4 

Max Rate/Min Rate 10 7.0 3.3 2.7 2.5 2.2 2.0 1.9 1.9 

Range in Rates (%) 27.0 25.7 10.5 7.9 7.5 6.7 6.2 5.9 5.9 

Only small reductions in: 

Range in Rates: 1.6% 

Max/Min Ratio: 0.6 

Lessons Learned 

• Global sharing is not required to fix the inequity problem 



Comparison of 2000-2009 Allocation 

Year 

Actual Allocation 600 mile Allocation 

Min 

Rate 

(%) 

Max 

Rate 

(%) 

Range 

(%) 

Max Rate/ 

Min Rate 

Min 

Rate 

(%) 

Max 

Rate 

(%) 

Range 

(%) 

Max Rate/ 

Min Rate 

2000 5.1 54.5 49.4 10.6 6.9 54.5 47.6 7.9 

2001 5.1 54.6 49.5 10.8 5.9 38.3 32.4 6.5 

2002 5.5 45.0 39.5 8.2 5.5 38.3 32.8 6.9 

2003 4.7 44.1 39.4 9.4 4.7 39.5 34.8 8.4 

2004 4.0 60.3 56.3 15 5.0 31.8 26.8 6.4 

2005 3.9 45.8 42.0 11.9 4.4 25.0 20.6 5.7 

2006 4.3 49.6 45.3 11.5 5.3 25.9 20.7 4.9 

2007 4.4 37.7 33.3 8.6 4.4 23.4 19.0 5.3 

2008 4.0 29.5 25.5 7.3 4.8 23.0 18.2 4.8 

2009 3.0 29.9 27.0 10 5.0 12.5 7.5 2.5 



Yearly KSHARE Sharing 

More strategic, 

focused sharing 

between DSAs 

No DSA shares 

with more than 

3 DSAs 

Local Allocation Increases by 3%! 



Design of Communities and/or 

Rural Infrastructure [2] 

[1] An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses,  SV. Begur, D.M. Miller, and JR Weaver, 

Interfaces, 1997, 27(4). [2] “Improving accessibility to rural health services: The maximal covering network improvement problem,” by 

Lisa Murawski,  Richard L. Church, Socio-Economic Planning Sciences, 43(2), 2009 

 

 

Routing of Home Health 

Services [1] 



“A Model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data”, Reuben 

Thomas,  Carlos J. Paredes, Sanjay Mehrotra, Eleftherios T. Papoutsakis, and Vassily Hatzimanikatis, BMC Bioinformatics, 8:228, 2007. 

Time-course variation of subset of important genes in the sporulation 

cascade of B. Anthracis. The time-course (in hours) variation of the logarithm 

of expression ratios in color-coded format (green indicates up-regulation, red 

indicates down-regulation, grey indicates missing data and the intensity of the 

color indicates the level of regulation) of 24 important genes in the sporulation 

cascade of B. anthracis . 



Time profiles of log mRNA expression ratios for three representative synthetic 

networks. Logarithm of mRNA expression ratios as a function of time for three 

networks.  The network in (a), "Low" results in a relatively lower degree of similarity 

between the different gene-expression patterns in the system, the network in (b), 

"Medium" in a medium degree of similarity, while the network in (c), "High“ results in a 

relatively high degree of similarity. The units of time are arbitrary but are consistent with 

the units of the parameters of the system. 





Variation of correct identifications and identification errors with experimental 

samples and discretizations for "Low" network. Variation of the percentage of 

correctly identified interactions among 30 known interactions and the error as a 

percentage of the error obtained with the smallest number of samples. The variations 

are with respect to the number of experimental samples chosen and the number of 

discretizations, Nt. The "experimental" data are obtained by simulation using the "Low" 

synthetic network (see Figure 1). 



Situation: Centers for Disease Control and Prevention 

allocates diabetes budgets to different states for improving 

diabetic outcomes every year.   

 

Question: How to allocate limited budget to the different 

states? Which Risk/Outcome criterion to use? 

 

Problem: Stakeholders have different opinions about how to 

allocate money to states! 

 

Current Practice: Don’t know, but budgets are not correlated 

with patient outcomes 

 

 

 

 

 

 

 

 

“Outcome Based State Budget Allocation for Diabetes Prevision Programs Using Multi-Criteria Optimization with Robust 

Weights,” Sanjay Mehrotra, and Kibaek Kim, Health Care Management Sciences, 2011 
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Principal component values: the bi-

variate correlations between the actual data 

and the corresponding component. 

 

The communality values: represent 

how well all the principal components can 

explain the variation in the observed data 

 

 All data is explained by 2 

components, except Budget and 

ESRD which needs 3rd. 

 

 ESRD and Budget have 

“negative correlation” 

 

 Budget can not be explained by 

the risk criteria! 

09 



Excess Risk/Utility Function: 





n

i

iijj mjxzf
1

,...,1),0,max()x(

Relative risk across states 

for each risk factor 

Relative risk 

of criterion i in state j 
Allocated budget 

in state j 



Mortality based Relative Importance Hospital Discharge based Relative 

Importance 



http://optimize.iems.northwestern.edu/Diabetes 

Mean Importance 

Willingness 

to Compromise 

http://optimize.iems.northwestern.edu/Diabetes


Define Disparity for each criteria j as: 

zij is budget share for state i if criteria j is the only criteria used for a 

proportional budget allocation according to this criteria. 

 

xi is the decision variable (model recommended budget)  

Perturbation to 

each extreme 

around a center 

Mortality and Discharge Ctrs 



 Weight center and regions matter – though solutions are 

 “stable” when perturbations are “reasonable”  

 Some states may be significantly underfunded   



 Initial recommendations are different but they approach 

 each other as weight regions are enlarged 

 Rest of the conclusions are similar!   



 Recommended weights emphasize 

 regular self foot exam (1-3) and 

 eye exam (2-2), blood glucose 

 self checkup (4-2) and patient 

 education (7-1) to reduce 

 geographical disparity. 

 In short, proper physician follow-up 

 and education (7-1, 7-2) will help 

 reduce disparity.   

 Find Relative importance (weights) from a recommended 

 budget. 



 Highly versatile technology for data analysis and decision 

 making 

 

 It is well developed with continued development 

 

 Numerous use examples in areas other than health  

 

 Whenever your problems can be framed with an “objective” 

 to be minimized/maximized, you have an optimization 

 problem!!!   
 



Thank you 


