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Outline

* Understanding Optimization

* Univariate Decisions (non-dichotomous) with Data Uncertainty
= Example: Nurse Shift Planning

** Robust Predictive Modeling — Multivariate Decisions; Few Data Samples
» Example: Glucose/Pyridine Concentration Predictive Modeling

¢ Designing Networks
= Example: Addressing Geographic Inequity in Kidney Allocation

“ Reverse Engineering an Underlying Mechanism — Longitudinal Data
» Example: Gene Regulatory Networks

¢ Multi-Objective Decision Making
= Example: National Diabetes Budget Allocation for Prevention Programs



Optimization Problem Structure

Objective

Available Resource
Structural Requirements
Ambiguity in Data

Decisions

How Much? -- Quantity
When? — Timing/Policy
Which? — Selection
Where? -- Locations

How? — Mechanism Design
Who? -- Scheduling



How Many Valentine Gift Boxes to Order?

Financial Input:

= Unit Sales Price p = $18

= Unit Purchasing Price ¢ = $7/box

. Discounted Sales Price (Salvage
Value) = $5

Store forecasts 7
demand and places  Order
order Received

Selling
Period

Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Left over
sold at
discount



Elements of the Management Decision Problem

= Demand uncertainty

= An Integer decision

= Areward function

= Decision before demand is
realized

= Need a systematic method for
finding the “best decision™




Demand Distribution

Demand Forecast
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Profit as a Function of Demand

Profit = Sales Revenue + Salvage Value — Purchase Price

= Scenario 1:
Assume Order Quantity g = 700, Demand d=500
Profit =18 * 500 + 5 * (700-500) — 7 * 700

= $5,100
= Scenario 2:
q = 700, d=1000
Profit =18 * 700+ 5 * (0) —7 * 700
=$7,700

For a given order quantity (q) depending on the demand we
have different values profits!



Writing Profits Using Symbols

Profit = Sales Revenue + Salvage Value — Purchase Price

We can only sell minimum of

demand and order quantity g-d Is the salvage quantity

Profit(q,d) = p min(d,q) + s max(0,g-d) — c q

T T —
Sales Revenue  Salvage Revenue Purchasing Cost



Expected Profit for a Given Order Quantity

Order Quantity q =700 q=700
Demand | Probability Profit Probability
di Pi * Profit
400 .005 3800 19
500 01 5100 51
600 .02 6400 128
700 .04 7700 308
800 .07 7700 539
900 11 7700 847
1,000 15 7700 1155
1,100 19 7700 1463
1,200 15 7700 1155
1,300 A1 7700 847
1,400 .07 7700 539
1,500 .04 7700 308
1,600 .02 7700 154
1,700 01 7700 77
1,800 .005 7700 38.5
Expected Value of Profit 7628.5

= [For each order quantity

profit Is a random
variable.

We calculate expected
value of profit
function, which is
random for a given
order quantity.

We want know the
“best” order quantity,
I.e. one that maximizes
expected profit!



Finding the Optimal Quantity

Order Expected
Quantity Profit
400 $ 4,400
500 $5,494
600 $6,574
700 $ 7,628
800 $ 8,631
900 $ 9,542
1,000 $10,311
1,100 $ 10,884
1,200 $11,211
1,300 $11,342
1,400 $11,331
1,500 $11,228
1,600 $11,074
1,700 $ 10,894
1,800 $ 10,700

Expected Profit

= At optimum: Expected cost of lost
sales due to under stocking =
Expected cost of overstocking
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Shift Staffing Levels

Situation: Need to staff a shift cost-effectively while not
compromising patient safety

Common Practice: Staff with a mix of permanent and
temporary (agency or float) nurses

Question: How many permanent nurses to use?

An Approach:
“Cost” .= the per shift salary of a permanent RN

“Stock-Out Price” := daily per shift salary of a temporary RN
“‘Salvage Value” := benefit of having an extra permanent RN

Total Cost = Regular staffing cost + under staffing costs + overstaffing costs

4 e

“Distribution-Robust Newsvendor Models for Shift Nurse Demand Estimation”, Ashley Davis, Sanjay Mehrotra, Mark Daskin and Jane Holl
(under review Asia Pacific Journal of Operations Research)



Predictive Modeling with Limited Noisy Experimental
Data
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“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh,
Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010



Predictive Modeling with Experimental Data

Question: How to predict true concentrations using limited
calibration data?

Problem: Calibration data is noisy and system is over
determined.

Current Practice: Using Partial Least-squares from Statistics
which is meant to filter noise and give prediction.

Alternative Approach: Build Robust Least-squares based
optimization model

“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh,
Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010



Predictive Modeling with Experimental Data

Enhanced Raman Data

© 2 00E+05

S

%_ 1.50E+05 _7\/\ —e— 200 mg/dl
= N —= 200 /dl
£ 1.00E+05 7\ mg/d
3 \\ 300 mg/dl
g 5.00E+04 300 mg/dl
+ 0.00E+00

1 160 319 478 637 796 955 1114 1273
Pixel
Calibration

[c]g=10, 20, 40, 60, 100, 150, 250, 350, 450 mg/dL
Validation
[c]g=15, 50, 80,120, 200, 300 mg/dL

10 spectra at each concentration, baseline corrected, normalized

“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh,
Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010



Dependent variables

Robust Least-square Framework
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Results: A pyridine System
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“Prediction range estimation from noisy Raman spectra with robust optimization”, Olga Lyandres, Richard P. Van Duyne, Joseph T. Walsh,
Matthew R. Glucksberg and Sanjay Mehrotra, Analyst, 135, 2111-2118, 2010



Results: Comparison with all Popular PLS Methods

Robust optimization Partial least squares (PLS) prediction — 99% prediction interval
Actual RO dicti
concentration (x0)) areeiEien Bootstrap method Faber 96 method Serneels method Phatak method
range
Pyridine concentrations (% v/v)

5 3.14 - 8.66/3.97 -11.81 —-6.03/-8.92* -11.63 —-6.21/-8.92* -13.38 —-4.46/-8.92* -11.63 —-6.21/-8.92*
10 8.6 —17.37/8.87 -0.52 — 4.48/1.98* -0.49 — 4.45/1.98* -0.62 — 4.58/1.98* -0.49 — 4.45/1.98*
15 14.3 -19.85/17.66# 10.41 - 15.32/12.87 10.42 - 15.31/12.87 10.41 - 15.32/12.87 10.42 - 15.31/12.87
25 24.96 — 26.7/25.87 25.08 — 29.90/27.49* 25.09 - 29.90/27.49* 24.97 - 30.01/27.49 25.09 - 29.90/27.49*
30 30.19 - 32.57/31.47* 33.18 — 38.08/35.63* 33.21 - 38.05/35.63* 32.89 - 38.36/35.63* 33.21 - 38.05/35.63*
35 35.75 — 36.88/36.16* 35.27 — 40.09/37.68* 35.27 - 40.08/37.68* 35.24 — 40.11/37.68* 35.27 — 40.08/37.68*
45 44.32 — 48.64/44.98 40.15 — 45.30/42.72 40.27 — 45.18/42.72 39.55 - 45.90/42.72 40.27 — 45.18/42.72
50 47.47 — 54.64/50.24 44.41 — 49.60/47.01* 44.41 — 49.60/47.01* 43.07 — 50.94/47.01 44.41 — 49.60/47.01*
55 52.62 — 59.35/54.85 49.91 — 54.97/52.44* 50.01 — 54.87/52.44* 49.60 — 55.28/52.44 50.01 - 54.87/52.44*
65 61.65 — 67.98/65.47 59.48 — 64.55/62.02* 59.58 — 64.45/62.02* 59.07 - 64.96/62.02* 59.58 — 64.45/62.02*
70 68.08 — 75.62/71.93 65.43 - 70.80/68.11 65.62 — 70.60/68.11 65.40 — 70.83/68.11 65.62 — 70.60/68.11
75 71.96 — 77.61/75.43 69.64 — 74.66/72.15* 69.75 — 74.54/72.15* 69.59 — 74.70/72.15* 69.75 — 74.54/72.15*
85 80.52 — 85.66/83.25 79.58 — 84.90/82.24* 79.82 — 84.66/82.24* 79.44 — 85.03/82.24 79.82 — 84.66/82.24*
90 86.50 — 89.31/87.2* 83.79 — 88.85/86.32* 83.89 — 88.74/86.32* 83.43 - 89.21/86.32* 83.89 — 88.74/86.32*
95 90.08 — 93.41/91.16* 88.08 — 93.06/90.57* 88.13 - 93.00/90.57* 87.82 —93.31/90.57* 88.13 —93.00/90.57*

Mean Range

4.38

5.1

4.93

5.84

4.93

Relative error

0.81

2.04

2.12

2.95

2.12

RMSEP

1.7

5.1

5.1

5.1

5.1

* indicates when actual value is not included in prediction range or interval
# coefficients initialized to values determined by least squares solution, for all other samples coefficients were initialized to 0.1




Other Examples
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= N o .
o N U W A~ oG
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Geographic Disparity in Kidney Allocation

= =3.21 years!

DSA

In Collaboration with:
Ashley E Davis, Mark S Daskin, Daniela P Ladner, John J Friedewald, Anton | Skaro, and Michael
M Abecassis,

2000-2009 Median Waiting Time Variability

If you live in...

IL: 2.7 years vs WI: 1.4 years
NY:3.0years vs PA:1.6years



Geographic Disparity in Kidney Allocation

Population

100,000 Ratio = 0.17

90,000 y
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000 =

Ratio = 0.22
Who deserves a transplant?

-—a———— 0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
——Waitlist -=Transplants

Ratio: Transplanted patients relative to waitlisted patients that year



United Network for Organ Sharing (UNOS)

« Created by the National Organ Transplant Act in 1984

« Facilitate all Organ Donation and Transplantation in the US

UNOS Regions [11] UNOS Donor Service Areas (DSA) [58]

Iy

Northwestern University

: MCCormick
ersi
Transplant Outcomes Research Collaborative Northwestern Engineering
Patient Safety e Quality of Life e Informed Consent & Disparities
Access & ® Risk Prediction & i

e Health Informatics




Current Geographic Kidney Allocation:

Local - Regional - National

“National”

— MCcCormick
Northwestern University
Transplant Outcomes Research Collaborative Northwestern Engineering
Patient Safety e Quality of Life e Informed Consent & Disparities

Access & ion e Risk Prediction & ics e Health Informatics




Actual 2009 DSA “Good Kidney” Sharing

""" > =2-10% Sharing x \“ ’ ;’
- => = 10-20% Sharing R, Pl
- =>20% Sharing o0

-~

(ocal: 76% ) Regional: 8% National: 16%

e MC¢Cormick
Northwestern University
Transplant Outcomes Research Collaborative Northwestern Engineering
Patient Safety e Quality of Life o Informed Consent & Disparities

Access & ion ¢ Risk Predi & ics e Health Informatics




Proposed KSHARE Sharing Strategy

Northwestern University
Transplant Outcomes Research Collaborative

Patient Safety e Quality of Life e Informed Consent & Disparities
ess i

Access & ion ¢ Risk Predi & ics e Health Informatics




KSHARE Optimization Model

Assumptions Objectives
1. All patients treated the + Minimize DSA Transplant Rate Variability
same . rateps, = Kidney Transplants in DSA

Waitlist population in DSA

2. All kidneys accepted
as optimal results
dictate

. Equitable by the Institute of Medicine
« Maintain current local allocation
e 10 year phase-in with minimal:

« DSA Sharing Partnerships

» Changes to Yearly Sharing Strategy

MCCormick
Northwestern University
Transplant Outcomes Research Collaboratlve Northwestern Engineering
Pati Sfy * Qual lty fo IfrmedC p
cccccc & ® Risk Pri & cs

t frml




« Sets
| : Set of all DSAs in the Continental US
DSA(i): Set of Feasible Sharing DSAs for DSA i, including i

« Parameters

w(i): DSA i Waitlist on Jan 1, 2000

g(i,t): DSA i Waitlist Registrations — Non-Transplant Removals in Year 200t
maxTR, minTR: Limits on transplant rate range to be attained by 2009

I(i): Yearly percentage of locally allocated kidneys in DSA |

s(i,t): DSA i kidney procurement in year 200t

M >>0, T = 10 years, ¢ = 1078 (scaling parameter)

« Variables

Northwestern University

Transplant Outcomes Research Collaboratlve

& ( frmls

\ MCCormick
Northwestern Engineering
Pati Sly * Qual lty fo IfrmedC p
o Risk Pr

A(i,j,1): Kidneys allocated from DSA i to DSA j in year 200t

WL(i,t): DSA i Waitlist size on January 15, 200t

TX(i,t): DSA total kidney transplants in year 200t

SP(i,j): equals 1 if DSA i ever shares kidneys with DSA |

FS(i,j,t): Percent of DSA i procurement allocated to DSA | in year 200t

maxFS(i,j), minFS(,j): Max/Min annually percent of DSA i kidneys allocated to DSA |




KSHARE Formulation

Minimize Sharing

minz Z @ = SP(i,j) + maxFS(i,j) — minFS(i,)) < Partnerships and Variation in
i€l \ jeDSA i Yearly Sharing Strategy
subject to:
WL(i,0) =w(i), Vviel <€ Initialize Waitlist
WL, t +1) = WL(i,t) + g(i,t) —TX(i, t), Viel,t =0..T — 1 € Update Waitlist Annually
TX(i,t) = Z A(j,i,t), VielL t=0..T<€ Calculate Total Yearly Transplants
JEDSA i
1(i) =s(i,t) = A(i,i,t), VvielLLt=0..T <€ Meet local allocation levels
A(i,j,t) =s(i,t), VielLt=0..T € Allocate all procured kidneys
jEDSA(D)
minTR » WL(i,T) = TX(i,T) = maxTR = WL(i,T), v i € | €<———Transplant rate in acceptable range
z A(i,j,t) =M =SP(i,j), Viel,jeDSA() € Establish Sharing Partnerships
t=0..T

FS(i,j,t) *s(i,t) = A(i,j, t), Viel,jeDSA(i),t=0..T €<———Calculate Yearly Sharing Strategy
minFS(i,j) < FS(i,j,t) <maxFS(i,j), Vi€l j€ DSA(i),t =0..T Range in yearly sharing strategies

o McCormick
Northwestern University
Transplant Outcomes Research Collaborative Northwestern Engineering
Patient Safety e Quality of Life o Informed Consent & Disparities

Access & ion ¢ Risk Predi & ics e Health Informatics




KSHARE Formulation

minimize: Z Z (SharePair(i,j) + maxSharedLim(i,j) — minSharedLim(i,j))
All DSAsi \All DSA jin FeasibleDSAs(i)
waitlistSize(i, 0) = initialWaitlist(i)
waitlistSize (i,t + 1) = waitlistSize(i, t) + growthInWaitlist(i, t) — transplants(i, t)

transplants(i, t) = Z allocation(j, i, t)
All DSAs j in FeasibleDSAs(i)

localAllocation(i) * kidneysProcured(i,t) = sharedAllocation(j,i, t)

allocation(i,j, t) = kidneysProcured(i, t)
All DSAs j in FeasibleDSAs(i)

minRateLim * waitlistSize(i, T) < transplants(i,T) = maxRateLim * waitlistSize(i, T)

Z allocation(i,j,t) = M * sharePair(i,j)
All Years t
fracShared(i,j, t) * kidneysProcured(i, t) = allocation(i,j, t)
minSharedLim(i,j) = fracShared(i,j, t) = maxSharedLim(i,j)

M¢Cormick
Northwestern Engineering




Effect of Sharing Radius

DSA Transplant |Actual Feasible Sharing Radius, miles

Rate Statistic | 2009 | 370 [ 450 1 500 | 600 | 900 | 1,200 | 1,500 2,700
30 43 45 46|50(58 63 65 |66
30.0 30.0 15.0 125|125(125 125 124 |124

Max Rate/Min Rate 10 70 33 2712522 20 1.9 1.9
SENLERGBREICENCAR 27.0 257 105 79| 75| 6.7 6.2 5.9 5.9

Only small reductions in:
Range in Rates: 1.6%
Max/Min Ratio: 0.6

Lessons Learned

» Global sharing is not required to fix the inequity problem

Northwestern Univ
Transplant Outcomes Research Collaboratlve

Access & 1o R|sk Pr & ics o Health Informatics

M¢Cormick
Northwestern Engineering




Comparison of 2000-2009 Allocation

Min
Rate
Year | (%)

Actual Allocation

Range  Max Rate,

Min Rate

600 mile Allocation

Range  Max Rate,

Min Rate

51 545 | 494 10.6 69 545 | 476 7.9
51 546 | 495 10.8 59 383 | 324 6.5
vl 55 450 | 395 8.2 55 383 | 328 6.9
el 47 441 | 394 9.4 47 395 | 348 8.4
40 60.3 | 56.3 15 50 318 | 2638 6.4
30 458 | 420 11.9 44 250 | 206 5.7
43 496 | 45.3 11.5 53 259 | 207 4.9
44 377 | 333 8.6 44 234 | 19.0 5.3
00 40 295 | 255 7.3 48 230 | 182 48
BN 30 209 [ 270 10 50 125 | 75 2.5

Northwestern University

Transplant Outcomes Research Collaborative
& Disparities

Patient Safety e Quality of Life e Informed Consent pi
cccccc & ion ¢ Risk Predicti i

& e Health Informatics

M¢Cormick
Northwestern Engineering




Yearly KSHARE Sharing

Local Allocation Increases by 3%!

More strategic,
focused sharing } ‘@

between DSAs [
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Other Examples

- o " o 1R | s :
\\ /J/ - ] | J Suhum District, Easter Region, Ghana
ol Existing Network

20 Kilometers
]

1

Routing of Home Health

Services [1] Design of Communities and/or

Rural Infrastructure [2]

[1] An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses, SV. Begur, D.M. Miller, and JR Weaver,
Interfaces, 1997, 27(4). [2] “Improving accessibility to rural health services: The maximal covering network improvement problem,” by
Lisa Murawski, Richard L. Church, Socio-Economic Planning Sciences, 43(2), 2009




Reverse Engineering of Gene Regulatory Networks

Time-course variation of subset of important genes in the sporulation
cascade of B. Anthracis. The time-course (in hours) variation of the logarithm
of expression ratios in color-coded format (green indicates up-regulation, red
iIndicates down-regulation, grey indicates missing data and the intensity of the
color indicates the level of regulation) of 24 important genes in the sporulation
cascade of B. anthracis .

“A Model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data”, Reuben
Thomas, Carlos J. Paredes, Sanjay Mehrotra, Eleftherios T. Papoutsakis, and Vassily Hatzimanikatis, BMC Bioinformatics, 8:228, 2007.



Expressions from different Regulatory Networks
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Time profiles of log mMRNA expression ratios for three representative synthetic
networks. Logarithm of mMRNA expression ratios as a function of time for three
networks. The network in (a), "Low" results in a relatively lower degree of similarity
between the different gene-expression patterns in the system, the network in (b),
"Medium" in a medium degree of similarity, while the network in (c), "High® results in a
relatively high degree of similarity. The units of time are arbitrary but are consistent with
the units of the parameters of the system.



Mathematical Formulation for the Network Design

i

N dm;(t;) PR
1‘1‘1]]’12 log " + By (t;) |- log(a Ztrﬂ, log( p,‘:[t N+t llE |

j=1

(9)
subject to
DY; < §<DY;,j=12,. (10)
z‘rq_ (11)
YE-J,-E’UI i,ji=12,...n (12)

log(¢;) = -A (13)



Mathematical Formulation for the Network Design
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Variation of correct identifications and identification errors with experimental
samples and discretizations for "Low" network. Variation of the percentage of
correctly identified interactions among 30 known interactions and the error as a
percentage of the error obtained with the smallest number of samples. The variations
are with respect to the number of experimental samples chosen and the number of
discretizations, Nt. The "experimental” data are obtained by simulation using the "Low"
synthetic network (see Figure 1).



Multi-Expert Multi-Objective Decision Making

Situation: Centers for Disease Control and Prevention
allocates diabetes budgets to different states for improving
diabetic outcomes every year.

Question: How to allocate limited budget to the different
states? Which Risk/Outcome criterion to use?

Problem: Stakeholders have different opinions about how to
allocate money to states!

Current Practice: Don’t know, but budgets are not correlated
with patient outcomes

“Outcome Based State Budget Allocation for Diabetes Prevision Programs Using Multi-Criteria Optimization with Robust
Weights,” Sanjay Mehrotra, and Kibaek Kim, Health Care Management Sciences, 2011



Diabetes Prevalence & Comorbidities Vary

Percentage of Diabetic Population
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Decision Criteria from: Behavioral Risk Factor
Surveillance Survey (BRFSS) Data

24 Possible Criteria

Decision
Criteria Description

1-1. the average number of times for checking feet sores and irritations by a health professional in the
past 12 month

1-2. the average number of times for checking feet sores and irritations by themselves in the past 12
month

1-3. the number of diabetic patients who have ever had feet sores or irritations for more than four weeks

2-1. the number of diabetic patients who have not had an eye exam more than a month

2-2. the number of diabetic patients having eyes affected by diabetes or having retinopathy

3-1. the number of diabetic patients who have not had a flu shot during the past 12 months

3-2. the number of diabetic patients who have not had a pneumonia shot during the past 12 months

4-1. the average number of times for having a health professional checked for Hemoglobin Alc level

4-2. the average number of times for personal checking blood glucose level

5-1. the gap between the maximum and the minimum of the prevalence among races/ethnicities

6-1. the number of diabetic patients who have ever diagnosed with heart attack

6-2. the number of diabetic patients who have ever diagnosed with angina or coronary heart disease

6-3. the number of diabetic patients who have ever diagnosed with stroke

6-4. the number of diabetic patients who have not checked blood cholesterol more than one year

6-5. the number of diabetic patients who have ever diagnosed with high blood cholesterol

6-6. the number of diabetic patients who have ever diagnosed with high blood pressure

6-7. the number of diabetic patients who are currently smoking

6-8. the number of obese diabetic patients

6-9. the number of diabetic patients who did not participate any physical activities or exercise during
the past month

7-1. the average number of times for seeing health professionals for diabetes in the past 12 months

7-2. the number of diabetic patients who have never taken classes in managing diabetes

7-3. the number of people who have been diagnosed as diabetes

8-1. the crude rate of adults initiating treatment for diabetes-related ESRD

9-1. the number of deaths per 1,000 population




Mapping Criteria to National Diabetes Objectives

Decision Criteria Group

# (# of criteria) Data Source NDO [21] ICD-9

1 Limb Amputation (3) BRFESS 1 250.6

2 Blindness (2) BRE'SS 2 250.5

3 Influenza and Pneumonia (2) BRFSS 3 -

il Glucose Control (2) BRFEFSS 4 250.1 - 250.3
5 Disparity (1) BRESS 5 -

6 Cardiac (9) BRF'SS 6 250.7

7 Diabetic Prevalence (3) BRE'SS - 250.8 - 250.9
8 Renal Failure (1) NDSS - 250.4
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r Retrospective Principal Component Analysis (PCA) |
of the CDC Budget

F—— - Principal component values: the bi-
rincipal Components . .
Criteria 1 3 3 Communality| | Variate correlations between the actual data

09| Budget 030 -0.28  -0.66 0.60 and the corresponding component.

1-1 -0.25 0.95 0.10 0.97

1-2 023 0.95 0.06 0.95 _

13 095 001  -0.11 0.02 The communality values: represent

j; g:gg ‘{;]'[]21‘ 8‘1’5 ll]gll] how well all the principal components can

31 0.96 .0.95 0.06 0.08 explain the variation in the observed data

3-2 0.97 020  -0.06 0.99

4-1 021 095  -0.04 0.95

4-2 -0.26 0.95 0.12 0.98 : :

5-1 0.75 -0.41 0.01 0.73 > All data is exp|a|ned by 2

6-1 0.91 -0.34 -0.08 0.96

62  0.95 -028  -0.00 0.99 components, except Budget and

6-3 0.93 -031  -0.06 0.97 ESRD which needs 3.

6-4 0.95 -0.24 0.02 0.96

6-5 0.95 -0.28 -0.09 0.99

6-6 0.95 -0.29 -0.07 1.00

6-7 0.87 -041  -0.03 0.93 » ESRD and Budget have

6-8 0.93 -0.34 -0.07 0.99 “negative correlation”

6-9 0.91 -036  -0.05 0.96

7-1 022 0.95 0.05 0.96

T2 096001 -0.10 0.2 » Budget can not be explained by

7-3 0.96 -0.28 -0.07 1.00 i N

8-1 0.01 -004  0.88 0.77 the risk criterial

0-1 0.92 -0.30 -0.12 0.95




Diabetic Relative Risk Measure and Excess Risk
Function

Limp Amputation Excess Risk

State Risk Glycemic Risk Health Disparity Mortality Budget of Mortality
Alabama 0.007135 0.005188 0.033331 0.031085 0.012626 0.018459
Alaska 0.093590 0.103378 0.003743 0.002332 0.017833 0.000000
Arizona 0.007471 0.006835 0.021334 0.025801 0.016535 0.009265
Arkansas 0.013907 0.011237 0.014212 0.017949 0.012481 0.005469
California 0.001529 0.001240 0.111161 0.157799 0.136228 0.021571
Colorado 0.014551 0.013602 0.020933 0.014483 0.013602 0.000882
Connecticut 0.015555 0.009757 0.023900 0.016730 0.010192 0.006538
Delaware 0.045371 0.051390 0.005189 0.004086 0.025840| 0.000000
District of Columbia 0.078343 0.043969 0.005211 0.003936 0.043969 0.000000
Florida 0.002460 0.001507 0.079745 0.110648 0.093641 0.017006

Relative risk across states
for each risk factor

Excess Risk/Utility Function:

f;(x)= Zn:max( Z; —%,0), 1 =1,...,m

i=1
Relative risk /

of criterion i in state |

N

Allocated budget

In state |




Possible Weights for Classical Weighted Sum Multi
Criteria Optimization Approaches

Foot

30.43%
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Vascular
56.55%

Mortality based Relative Importance  Hospital Discharge based Relative
Importance



Interactive Multi-Objective Decision Making

http://optimize.iems.northwestern.edu/Diabetes Risk Factor Weight Importance

The Risk Weight Region Considered User Profile: | Sanjay Mehrotra ]
in the Budget Allocation

Willingness to Compromise: _ 2%
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http://optimize.iems.northwestern.edu/Diabetes

Back to the Diabetes Case Study

Define Disparity for each criteria j as:
n m

fi(x) = Z(Eij —zi)e. j=1,.... m. min max Z wj fi(x).

xeSweP _
i=1 j=1
where (-)+ = max{-,0}.

z;; Is budget share for state i if criteria j is the only criteria used for a
proportional budget allocation according to this criteria.

X; 1S the decision variable (model recommended budget)

S={x|Y " jzi=1lz;>0i=1,..., n}.

Mortality and Discharge Ctrs

B

Perturbation to = 2 e
each extreme | A \E

around a center | [~

3.00%




What did we learn?

CDC Budget Mortality Magnitude of Perturbation Budget Change
State Dollar Prop. Center 0.1 0.2 0.5 0.9 | Relative Absolute
AK $424.661  2.32% 0.24% 0.25% 0.32% 1.78% 1.78% 7.4 1.54%
AL $201.564 1.59% 3.25% 3.14% 3.14% 1.26% 1.11% 2.9 2.14%
AR $464.177  2.54% 1.80% 1.80% 1.79% 1.42% 1.34% 1.3 0.46%
AZ $250,017 1.37% 3.10% 3.10% 3.10% 1.61% 1.61% 1.9 1.49%
CA $1,043.922 5.71% 16.14% 16.14% 15.92% 13.71% 15.16% 1.2 2.43%
CO $507,359  2.7T% 1.44% 1.44% 1.44% 1.44% 1.44% 1.0 0.00%
CcT $252,782  1.38% 1.45% 1.47% 1.47% 1.47% 1.20% 1.2 0.28%
DC $261,917 1.43% 0.31% 0.31% 0.40% 4.68% 4.68% 15.3 4.37%
DE $386.912  2.12% 0.52% 0.54% 0.55% 3.41% 2.58% 6.6 2.89%
FL $694.394  3.80% 10.40% | 10.40%  10.20% 9.36%  10.20% 1.1 1.04%
GA $369.150  2.02% 6.44% 6.43% 6.43% 4.31% 3.92% 1.6 2.51%
HI T328 R8T 1.80Y9% 0.56Y7 0.57Y 0.69Y% 3.14% 3.14% 5.6 2 RRYY
IA $229.862 1.26% 1.31% 1.32% 1.37% 1.74% 1.74% 1.3 0.43%
ID $330.291 1.81% 0.79% 0.80% 0.85% 1.92% 1.92% 2.4 1.13%

“* Weight center and regions matter — though solutions are
“stable” when perturbations are “reasonable”
“ Some states may be significantly underfunded




Lessons Learned: Discharge Versus Mortality Center

Mortality | Hospital Discharge Magnitude of Perturbation Budget Change
State Center Center 0.1 0.2 0.5 0.9 | Rel. Abs.
AK 0.24% 0.38% 1.78% 1.78% 1.78% 1.78% 4.7 1.40%
AL 3.25% 2.52% 1.26% 1.14% 1.06% 1.11% 24 1.46%
AR 1.80% 1.68% 1.561% 1.46% 1.36% 1.34% 1.3 0.34%
AZ 3.10% 2.08% 1.61% 1.61% 1.61% 1.48% 1.4 0.61%
CA 16.14% 17.54% | 14.29% 14.55% 156.11% 15.16% 1.2 3.24%
CcO 1.44% 1.45% 1.44% 1.44% 1.44% 1.44% 1.0 0.01%
CT 1.45% 1.53% 1.47% 1.47% 1.28% 1.20% 1.3 0.33%
DC 0.31% 0.52% 1.68% 4.68% 4.68% 4.68% 9.0 4.15%
DE 0.52% 0.59% 2.58% 3.83% 2.58% 2.58% 6.5 3.24%
FL 10.40% 10.20% 9.76% 9.76% 9.98% 10.20% 1.0 0.44%
GA 6.44% 4.28% 3.92% 3.92% 3.92% 3.92% 1.1 0.36%
HI 0.56% 0.97% 3.14% 3.14% 3.14% 3.14% 3.2 2.16%
IA 1.31% 1.66% 1.66% 1.66% 1.66% 1.66% 1.0 0.00%
ID 0.79% 1.07% 1.92% 1.92% 1.92% 1.92% 1.8 0.84%

¢ Initial recommendations are different but they approach

each other as weight regions are enlarged
¢ Rest of the conclusions are similar!
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Policy Implications: Reverse Engineering

*» Find Relative importance (weights) from a recommended
budget.

v min
(WSO) ES

!

Z w; fi(x)

j=1

n m
max E ' E ZijNij — T
AW ‘ -

1= =

=14=1

w; >0, j=1,...

(InvLP)

IIIII

, 1.

** Recommended weights emphasize
regular self foot exam (1-3) and
eye exam (2-2), blood glucose
self checkup (4-2) and patient
education (7-1) to reduce
geographical disparity.

¢ In short, proper physician follow-up
and education (7-1, 7-2) will help
reduce disparity.

K ={(i.5) | ij +ai >

where 145 = max{z;; — 13,0} for all i,j.

=L =L




Conclusion
¢ Highly versatile technology for data analysis and decision
making
¢ It is well developed with continued development
“* Numerous use examples in areas other than health
“* Whenever your problems can be framed with an “objective”

to be minimized/maximized, you have an optimization
problem!!!



Thank you



