Clinical Research Services
Combined Under CCR

When a number of pharmaceutical companies inquired about his involvement in a set of new clinical trials, Steven Flamm, MD, knew University protocol would prevent his participation.

“I was on the verge of not being able to join in studies that could really help hepatitis C patients,” said Flamm, professor in medicine-gastroenterology and hepatology and surgery.

At issue, a requirement that investigators use Northwestern’s institutional review board (IRB), the panel tasked with ensuring patient safety. The sponsoring companies stipulated their trials pass through an independent IRB shared by all study sites, a move meant to expedite the approval process.

“The situation really illustrated the conflict-resolution role that the Center for Clinical Research (CCR) can play,” said director Lewis Smith, MD. “Led by Ken Gordon, MD, CCR associate director, our center worked with the University to devise a plan and pilot program that now permits for the usage of third-party IRBs on a case-by-case basis.”

In less than a year, Flamm was able to secure more than a half-dozen previously unattainable industry-sponsored trials. In fiscal year 2013, 11 Phase 3 studies led by four different investigators — including Gordon, professor of dermatology — were approved, laying the groundwork for consideration of

Continued on pg. 2
expanding the pilot program to select Phase 1 and 2 studies in the near future.

The newest iteration of clinical research support at Northwestern University, CCR was launched in 2012 as a means of merging, enhancing, and expanding the activities of the institutionally-supported Northwestern Center for Clinical Research (NCCR) and NIH-supported General Clinical Research Center (GCRC).

“The GCRC was mostly focused on National Institutes of Health (NIH)-funded research while the more-recent NCCR came into existence with a focus on industry-sponsored studies,” said Smith, professor in medicine-pulmonary and preventive medicine. “Under the umbrella of the Northwestern University Clinical and Translational Sciences Institute, the CCR has molded these two focal points into a comprehensive set of resources.”

As a university-wide core, CCR resources are available to all clinical and translational scientists, trainees, and staff on both campuses, as well as affiliated institutes and centers. While charges exist for some services, many are delivered for free.

The center currently offers:

- Clinical research space at Northwestern Memorial Hospital and Lurie Children's Hospital with nursing, nutrition, and specimen processing and analysis support
- Study budget preparation, review, and reconciliation
- Regulatory filings such as IRB submissions and IND/IDE applications
- Research participant recruitment (e.g., advertisements, subject screening)
- Nurse and non-nurse clinical research coordinators for hire (part-time and full-time)
- ClinicalTrials.gov registration and results reporting support
- Biostatistics services
- Clinical research navigation
- Advocacy for and assistance with clinical research issues
- Good Clinical Practices training and assistance
- Business development
- Catalogue of and links to additional clinical research resources, services and space at Northwestern University and beyond

During the school’s fiscal year 2013, CCR provided support to 107 investigators in 19 departments, including 10 Department of Medicine divisions. Since coming to fruition, the center has increased its support of IRB submissions by 60 percent and more than doubled the amount of time it provides for patient-recruitment assistance.

“We are continuing to build our service lines to meet the challenges of increasing demand from our faculty,” Smith said. “Northwestern wants to grow clinical research, and CCR will facilitate that growth, eventually seeking out industry-sponsored work and building an infrastructure that makes us an extremely attractive site for the NIH.”

While a major function of the center is to harmonize clinical research processes throughout the institution, CCR also plays a crucial role in identifying and addressing issues that investigators may have.

“Many of our faculty and support staff think of a problem as their own – and it may be unique – but often it is symptomatic of an issue that a lot of people share,” Smith said. “Our role is to work with investigators and present an issue on their behalf.”

Using the enterprise data warehouse, the CCR recently launched a clinical research management dashboard that allows for daily snapshots of the number of studies, investigators, participants, and more taking place within the medical school.

“The goal here is to do more of what we are already doing with an eye on doing it faster, better, more safely, and more cost-effectively,” Smith said. “We exist to make it easier for investigators to conduct clinical and translational research.”
Chicago Campus Home to Unique Graduate Program

For a second year, Northwestern University’s Health Sciences Integrated PhD (HSIP) program, under the leadership of director, Neil Jordan, PhD, welcomed new doctoral students to campus. Unique to Feinberg, the program offers an individualized course of study for doctorate students looking to gain research expertise and skills in clinical and population sciences.

“HSIP serves as the sister program to the Driskill Graduate Program in the Life Sciences (DGP) for non-bench scientists,” says Suzanne Cox, PhD, MPH, associate director of the program. “It involves multiple departments from all over Northwestern’s campus, uses an integrated interdisciplinary approach, and lives under the Institute for Public Health and Medicine (IPHAM) within the medical school. In short, no other university has anything like it.”

All students in the program initially follow a core curriculum in the health sciences, and then focus their research and education on a specific track, such as health and biomedical informatics, health services and outcomes research, healthcare quality and patient safety, or translational outcomes science.

The program was designed as a way to address a gap in graduate education at Northwestern by providing doctorate level education in non-bench (or “dry lab”) health sciences research. It builds upon existing master’s degree programs within Feinberg in epidemiology and biostatistics, informatics, public health, health services and outcomes research, healthcare quality and patient safety, and clinical and translational investigation. New areas of strength in health measurement, developmental mechanisms of health and disease, and behavior and health will also be incorporated.

“It is increasingly necessary for those in the fields of public health and medicine to work together to address the national and global health concerns of the 21st century,” said Rowland Chang, MD, MPH, senior associate dean for public health and IPHAM director.

“The HSIP program prepares Northwestern graduates to become leaders in cutting-edge public health and healthcare research who promote interdisciplinary collaboration, cooperation, and problem solving to improve the health of our communities, country, and the world regardless of their positions in academia, government, or the private sector,” said Chang. “We’re proud to see these students on campus, engaging across disciplines and communities. They are the face of the next generation of public health and healthcare leaders.”

PhD Students Honored at 2nd Annual Driskill Day

Two students and two alumni received awards at the Second Annual Driskill Day, held in September. The event celebrates the Walter S. and Lucienne Driskill Graduate Training Program in Life Sciences (DGP).

DGP faculty members nominated students for the award, and the program committee chose four students to recognize based on the quality and broad impact of their research. The award recipients were:

Outstanding Current Student Award
- Lucas Sullivan, PhD candidate in the lab of Navdeep S. Chandel, PhD
- Jessica Huszar, PhD candidate in the lab of Christopher J. Payne, PhD

Outstanding Graduate Award
- Laty Cahoon, PhD’12, completed her thesis in the lab of Hank Seifert, PhD
- Laura Sena, PhD’13 and third-year medical student, completed her thesis in the lab of Chandel

Read more about Driskill Day.
Faculty Profile: Seema Khan, MD
Bluhm Family Professor of Cancer Research and Professor of Breast Surgery

Seema Khan, MD, professor in breast surgery, is interested both clinically and from a research perspective in understanding breast cancer risk and finding safe ways to prevent the disease. She hopes by accurately identifying high-risk women, she can help them make decisions that will lead to the lowest risk of breast cancer and the best quality of life.

Her current studies include examining the effects of soy protein in women and how it effects breast cancer risk, studying breast fluid hormone levels to determine how estrogen levels in breast fluid impact cancer risks, and investigating breast tissue hormone levels and gene expression.

A graduate of Dow Medical College in Pakistan, Khan completed her residency at Saint Joseph’s Hospital and Saint Agnes Hospital in Baltimore. She did her fellowship at Roswell Park Cancer Institute in Buffalo, New York.

What is the ultimate goal of your research?

The goal of my research is to accurately identify women at high risk for breast cancer so they can undergo appropriate surveillance for early detection and have options for prevention that are safe and effective.

How does your research advance medical science and knowledge?

We study the local breast environment, in terms of hormonal concentration, early changes on breast cells, and regulation of genes that promote breast tumor formation. This knowledge provides a better understanding of the genesis of different types of breast cancer, and offers opportunities to interrupt the pathways that lead to the development of malignancy and alter the breast environment that promotes this.

What types of collaborations are you engaged in?

On campus, I work closely with Raymond Bergan, MD, professor in medicine, in the Cancer Prevention Program of the Robert H. Lurie Cancer Center, Megan Sullivan, MD, assistant professor in pathology, and David Gius, MD, PhD, professor of radiation oncology. I also have a collaboration with Brian Hoffman, PhD, professor in chemistry at Weinberg College of Arts and Sciences.

In other institutions, my collaborators include Carol Fabian, MD, co-leader of cancer prevention at The University of Kansas Cancer Center, Saraswati Sukumar, PhD, professor in oncology at Johns Hopkins Medicine, and Seungpyo Hong, PhD, assistant professor in biopharmaceutical sciences and bioengineering at University of Illinois at Chicago.

How did you become interested in this area of research?

I became interested in breast cancer epidemiology as a surgical oncology fellow. I realized that research into breast cancer risk and prevention deals with basic questions about the biology of cancer causation and has many fascinating aspects. It also has great potential impact on human health, since safe and simple prevention strategies can decrease the burden of cancer in populations.

How is your research funded?

The Komen, Avon, and Breast Cancer Research Foundations, as well as the National Cancer Institute, fund my research projects. I have also been fortunate to receive a great deal of intramural support from the Lynn Sage Cancer Research Foundation, which kick-started much of what I am working on now.

Who makes up your research team, and what roles do they play?

I have several talented and creative colleagues in my group. Jun Wang, PhD, research assistant professor in surgery-breast cancer, studies lipid metabolism genes in breast cancer causation. Ouksheb Lee, PhD, post-doctoral fellow, works on developing transdermal delivery of drugs. Akash Gupta, PhD, post-doctoral fellow, examines the effects of female hormones and prevention drugs on breast cells. Ali Shidfar, PhD, post-doctoral fellow, works on polymorphisms that may affect various hormonal parameters in high risk women. David Ivancic, laboratory technician, has a wide array of skills and his work is integral to many of these projects.
Staff Profile: Lynne Goodreau
Administrative Director, BCVI Clinical Trials Unit

Where are you originally from?
I am from Escanaba, Michigan.

What is your educational background?
I received my Bachelor of Science degree in nursing from the University of Wisconsin-Madison and Master of Science degree from DePaul University in Chicago.

Tell us about your professional background.
Upon graduating from college with my nursing degree, my clinical focus quickly became cardiovascular medicine. I pursued a staff role in the cardiac catheterization lab at St. Luke's Medical Center in Milwaukee.

Afterward, I joined the Northwestern Medicine® team working as a nurse clinician in interventional cardiology. During this time, I was very involved with clinical care and the research interests of this area. Subsequently, I worked in the Bluhm Cardiovascular Institute (BCVI) Clinical Trials Unit (CTU) as the project manager with the industry-sponsored DETERMINE Trial. In 2011, I was promoted to my present position of administrative director for BCVI CTU.

Why did you choose to work at Northwestern?
I admired the reputation and level of excellence provided through Northwestern.

How do you personally help investigators at Feinberg?
As administrative director of the BVCI CTU, I work with the staff and members of the Northwestern Medicine community to provide the support and infrastructure for our investigators to perform high quality clinical research.

What professional activities do you take part in?
I am a member of the Advisory Council for Clinical Research (ACCR) at Northwestern.

What is your favorite part of the job?
The best part of my job is improving and advancing patient care. I am truly privileged to work with so many talented physicians and staff members.

What do you like to do in your spare time?
In my spare time, I like to run, bike, and enjoy the outdoors and time with my family.

Welcome New Faculty

Myles Wolf, MD, MMSc, joins as professor in the Department of Medicine’s Division of Nephrology, and director of the Center for Translational Metabolism and Health in the Institute for Public Health and Medicine.

Wolf previously was professor of medicine at the University of Miami Miller School of Medicine, a tenure during which he served as the Peggy and Harold Katz Family Endowed Chair of Nephrology and Hypertension and assistant dean for translational and clinical research. Prior, he served on the faculty at Harvard Medical School and was a visiting scientist at the Massachusetts Institute of Technology Clinical Research Center.

He received his Doctor of Medicine degree from State University of New York- Health Science Center at Brooklyn, and his Master of Medical Sciences degree at Harvard Medical School.

The focus of Wolf’s research is disordered mineral metabolism across the spectrum of chronic kidney disease, including dialysis, kidney transplantation, and earlier stages. He has authored or co-authored more than 130 articles in peer-reviewed journals, and currently serves as PI, co-investigator, or sponsor on several NIH grants. He was elected to the American Society of Clinical Investigation in 2010.

Danielle Maatouk, PhD, joins as assistant professor in the Department of Obstetrics and Gynecology.

Maatouk most recently conducted post-doctoral research at Duke University, and prior, at the University of Florida. She received her doctorate degree in molecular genetics and microbiology from the University of Florida.

Maatouk’s research interests are chromatin remodeling and gene regulation during sex determination. She has served as author or co-author on more than 15 articles in peer-reviewed journals.
Student Q&A: Diana Cohen, MD, MS
Medicine and Engineering Design & Innovation

Diana Cohen, MD, MS, Class of 2013, graduated from Northwestern University with an unusual combination of graduate degrees: Doctor of Medicine and Master of Science in engineering design and innovation.

Her interest in dermatology and mobile technology drove her to create the iPhone application Diet & Acne, which has since been incorporated into a research study with principal investigator Roopal Kundu, MD, associate professor of dermatology at Feinberg.

Cohen wants scientists to know that using a mobile app is an efficient, effective means to survey people from around the globe. In fact, Cohen believes this new technology may be a better route for some researchers than a traditional web or e-mail based survey.

What are your research interests?
I am interested in the future of health care delivery, where we are shifting away from hospital/office-based care and encouraging patients to engage more in their own care at home. The above notion is often referred to as “health 2.0.” Telemedicine, mobile health, and more sophisticated electronic health records all play a role in health 2.0 and are fascinating to me.

I am also attracted to the field of dermatology, which due to its inherent visual nature has been at the forefront of health 2.0, most notably with teledermatology.

Why did you create Diet & Acne?
The diet and acne app is a product of my thesis project for the Engineering Design and Innovation (EDI) Master’s program at Northwestern’s Evanston campus. I chose to focus on acne because of my interest in dermatology, and because acne is so prevalent and causes significant psychosocial distress.

I quickly discovered a common theme after speaking with acne patients and browsing online acne discussion forums: diet and certain foods were often blamed for the presence of acne. Certain foods, such as dairy products and foods with a high glycemic index, have been shown through research to be associated with the presence of acne, but most studies have been small, not well controlled, and with contradictory results. It is therefore not surprising that patients and even some dermatologists are confused about the topic.

I wanted to provide credible facts for people in an easily digestible manner that was also convenient. I tested different ways to deliver the educational information that I compiled from peer reviewed studies. The mobile format proved to be private, engaging, readily accessible (people never part with their smartphones!), and could reach thousands of people in a short amount of time.

Why was the mobile app turned into a research study?
After the Diet & Acne app became available in the iTunes app store, it was very exciting to see that people all over the world were downloading it. I immediately wanted to know more about the users of the app – what were their perceptions about diet’s influence on acne? Did the information in the app change their perceptions? How could the information be conveyed more effectively? – the list goes on. The study collects the answers to those questions. Since there are people all over the world who have downloaded the app, I was also interested in geographic trends regarding the perception of dietary influence on acne.

What Northwestern resources did you take advantage of when you were building the app?
I utilized resources on both campuses. My thesis mentor through the EDI program, Martha Cotton, helped me through the initial phases of the project to identify diet as an area of focus and later on to test various app designs. In Evanston, I also was a member of the NUvention web class. Everyone in the class was taught the basic architecture of web and mobile applications and provided with a number of resources to get started with building apps. From there it was very much a figure-it-out-as-you-go process. Luckily, while creating the app, I was surrounded by NU computer science students (through NUvention Web) who helped me overcome any bumps in the road.

At the downtown campus I had the privilege of speaking with a number of dermatologists who are experts in the field of acne, including Roopal Kundu, MD, (who is the PI on the study), Bethanee Schlosser, MD, PhD, and Peter Lio, MD.

Why is design important to medical research?
Design thinking is a creative problem solving process that is human-centered and has been used repeatedly with much success in various industries, health care included. Using the design thinking approach in health care and medical research allows us to take a big-picture view of problems. In turn, the solutions generated are often more impactful and readily implemented. The current landscape in medicine is not sustainable—design thinking can be used to establish better practices.
Sponsored Research

Laura Dada, PhD
Research Associate Professor in Medicine- Pulmonology

Project title: Role of the NaK ATPase Beta 1 Subunit in Alveolar Epithelial Integrity
Sponsor: National Heart, Lung, and Blood Institute

In patients with acute respiratory distress syndrome (ARDS), the alveoli are flooded with edema from leaky capillaries, which interferes with normal gas exchange across the alveolar-capillary barrier, resulting in impaired oxygenation. Hypoxia has been shown to contribute to lung injury and impair the lung’s ability to clear edema by mechanisms that have yet to be fully described.

Experimental evidence in human lungs and mammalian models has shown that alveolar fluid reabsorption is effected by active Na+ transport in alveolar epithelial cells, contributed mostly by apical Na+ channels and basolateral Na,K-ATPase. We and other investigators have reported that changes in Na,K-ATPase activity are associated with parallel effects on alveolar fluid reabsorption, and that the number of molecules of the Na,K-ATPase at the plasma membrane determines the enzyme’s activity.

The minimal unit of the Na,K-ATPase is a heterodimer composed of a catalytic α subunit and an N-glycosylated β subunit, expressed in both alveolar epithelial type II and type I cells. Additional regulatory subunits of the Na-K-ATPase belong to a family of seven single-span transmembrane proteins containing an FXYD motif in the transmembrane region. Expressed in a tissue-specific manner, FXYD proteins associate with the Na-K-ATPase α-β heterodimer in a number of cells as subsidiary subunits and may modulate the kinetic properties of the enzyme.

FXYD proteins are emerging not only as novel endogenous regulators of ion transport, but also as important targets in many human diseases, including neurological, cardiac and renal, and a wide variety of cancers. Over-expression of FXYD5 impairs intercellular adhesion in cultured cells and promotes experimental cancer metastasis in animals.

The integrity of alveolar epithelial junctions is crucial for edema clearance, since it ensures the efficiency of Na+ active transport by restricting paracellular diffusion and by maintaining polar distribution of basolateral Na,K-ATPase and apical Na+ channels. In addition to pumping ions, the Na-K-ATPase acts as a cell adhesion molecule by interacting with the Na-K-ATPase of the adjacent cell in the intercellular space. The Na,K-ATPase β1 subunit has three oligosaccharide chains (N-glycans) attached to its extracellular domain. The lack of these N-glycans in the β1 subunit delays the formation of cell-cell contacts and increases paracellular permeability of cell monolayers.

The major goal of this grant is to study the role of the Na,K-ATPase subunits in the regulation of alveolar epithelial function in normal and hypoxic conditions. We will shift the emphasis from the transport function of the Na,K-ATPase to its important role in stabilizing intercellular junctions. The interactions between the Na,K-ATPase β1 subunits of neighboring alveolar epithelial cells are critical for the integrity of the alveolar epithelium and alterations of these interactions by FXYD5 contribute to the impairment of epithelial barrier function during hypoxia.

Prasanna Krishnamurthy, PhD
Research Assistant Professor in Feinberg Cardiovascular Research Institute

Project title: MicroRNA Mediation of Endothelial Progenitor Cell Function in Myocardial Ischemia
Sponsor: National Heart, Lung, and Blood Institute

Heart disease is one of the leading causes of death in both men and women in the United States, impairing patients' ability to function and maintain quality of life. The overall goal of Krishnamurthy's laboratory is to understand and discover mechanisms of heart disease that will aid in developing innovative new therapies and translate that information to prevent or cure heart disease and alleviate patient suffering. Krishnamurthy's laboratory recently received NIH-R01 funding to study how autologous bone marrow stem cell therapy modulates microRNA (small RNA with a big role) profile in the myocardium and circulation in response to heart disease.

MicroRNAs are tiny regulators that function by modulating activity of genes involved in key cellular functions. Dysregulation of these important regulators will have a huge impact on the disease outcome, including that of heart diseases. We believe that these tiny regulators can either be used as biomarkers or serve as targets for potential therapeutic intervention during heart disease.

Continued on pg. 8
With NIH support, Krishnamurthy’s lab will study strategies to modulate miRNA profiles and enhance therapeutic efficacy of human CD34+ cells through release of paracrine secretion (containing growth factors and extracellular vesicles) that promotes cardiac regeneration and repair after injury. As a proof of concept, the team has tried this strategy in mouse bone marrow progenitor cells. By manipulating patients’ own stem cells with this strategy, they believe these discoveries will enhance the reparative capacity of human stem cells and serve as a springboard to accelerate stem cell therapy for patients with heart disease.

“I am humbled that by receiving 1.0 percentile (priority score of 10) for my grant, my work has been able to be seen alongside grants submitted by pioneers in cardiovascular regenerative medicine,” says Krishnamurthy. “This award highlights that I have achieved the standards of a distinguished club.”

Krishnamurthy believes is a great time to be working in the field of cardiovascular regenerative medicine. “Initial clinical trials have shown that bone marrow-derived stem cells are safe and beneficial for use in patients with heart disease,” he says. “It is now important to improve and harness the power of stem cells for treating patients with heart disease. Recently, my laboratory has shown that bone marrow progenitor cells, in addition to enhancing new blood vessel formation, also inhibit adverse cardiac fibrosis during ischemic disease in diabetic hearts (published in PlosOne).”

This initial research was supported in part by scientist development grant funded by American Heart Association.

Krishnamurthy says that innovation is at the core of his laboratory’s research mission. He hopes to discover therapeutic strategies to treat patients with heart disease.

“Support from my colleagues and collaborators, funding from NIH & AHA and inspiration from my peers is a great recipe for innovation,” he says. “I am honored to have this opportunity to build upon my dream. Focusing on the future, my laboratory will exploit every opportunity to build upon our past progress in cardiovascular research, and I look forward eagerly to continuing successes that will yield new knowledge for improving the lives of patients affected by heart disease.”

Krishnamurthy’s lab also seeks to understand the biological processes by which diabetes increases risk for coronary artery disease and the resulting pathological changes. A major emphasis in this area is to identify and target signaling pathways involved in diabetes-mediated inflammation, cardiac fibrosis, and endothelial (progenitor) cell dysfunction.

Krishnamurthy has garnered several distinguished honors during his career, including a 2011 American Heart Association Outstanding Early Career Investigator Award, presented to promising young scientists.

Reduced cell death (red) in the myocardium after transplantation of miRNA modulated-endothelial progenitor cells. Cardiomyocytes is stained green (alpha-skeletal muscle actinin) and nuclei is stained blue (DAPI).

NIH and HHS News

In a recent post, “One Nation in Support of Biomedical Research?” Francis Collins, PhD, and Sally Rockey, PhD, of the NIH, discuss how research is being affected by the federal funding crisis. They provided data that shows how NIH applicants are being affected while competitor nations are expanding their levels of investment in research.

Recently, the HHS held a public meeting on protections of human subjects and research studying standard of care interventions.

The various presentations from the day-long hearing are now available online. Ann Bonham, PhD, AAMC chief scientific officer, testified and also submitted a written statement. She underscored “the critical need for empirical research to refine the ‘standard of care’ and clarify the definition of reasonable foreseeable risk and provide informative and reasonable guidelines for disclosure of those risks.”

Read more NIH News, including updates on the shutdown.
Research in the News

Salon.com, September 24
Americans are clueless about Tylenol's risks
Michael Wolf was quoted.

CNN, September 23
The best way to conquer fear? Sleep on it
Katrina Hauner's research was featured.
► This study was also featured on NBC's Today.com

New York Times, September 23
After cancer, fertility is often within reach
Teresa Woodruff's research was featured.

New York Times, September 20
Ask Well: Sleep or exercise?
Phyllis Zee was quoted.

USA Today, September 17
Average yearly cost for a child's food allergy
Ruchi Gupta was quoted.
► Gupta was also quoted in US News & World Report

Chicago Tribune, September 13
Let teens sleep in: expert Kathryn Reid was quoted.

WebMD, September 10
How exercise affects sleep
Kelly Glazer Baron's research was featured.
► This study was also featured on Huffington Post, Chicago Tribune, and others.

CNN, September 9
Tuba or flute? Picking the right instrument for your child
Nina Kraus' research was featured.

Chicago Tribune, September 4
Research looks at 80-plus and sharp
Emily Rogalski's research was featured.

NBC News, September 3
Alzheimer's patients mentor med students in buddy program
Darby Morhardt's work was featured.

More headlines

High Impact Factor Research: August 2013

Help Feinberg Track Journals

The Feinberg Research Office regularly tracks research published by Feinberg investigators. The citations are used on web pages, in newsletters and social media, for internal reporting, and more. To more accurately track these journals, the Research Office asks that Feinberg investigators use the following institution name in the address field when publishing in peer-reviewed journals: “Northwestern University Feinberg School of Medicine.”
Funding Opportunities

Ecology and Evolution of Infectious Diseases (EEID)

More information

Sponsor: National Science Foundation
Submission Deadline: November 20
Upper Amount: $2.5 million

Synopsis: The goal of the EEID program is to support important and innovative research on the ecological, evolutionary, and socio-ecological principles that influence the transmission dynamics of infectious diseases. The program’s focus is on the discovery of general principles and processes and on building and testing models that elucidate these principles. Projects must address quantitative or computational understanding of pathogen transmission dynamics. Research in EEID is expected to be an interdisciplinary effort that goes beyond the scope of typical studies funded by the standing programs of the partner agencies. Because of the complexity of studies on the ecology and evolutionary ecology of infectious diseases, multidisciplinary teams of domestic and international collaborators with expertise from diverse disciplines are likely to be most effective.

Integrating Substance Abuse Prevention and Treatment within HIV/AIDS Service Delivery Settings (R01)

More information

Sponsor: United States Department of Health and Human Services, National Institutes of Health
Submission Deadline: November 15
Upper Amount: $2.5 million

Synopsis: This is part of a multi-pronged expansion of HIV and AIDS-related research within the context of drug and alcohol abuse among understudied populations and in understudied settings that show promise for the development of effective prevention and treatment efforts. Efforts to prevent, detect, and treat drug and alcohol abuse, addiction, and their consequences can be improved by integrating existing evidence-based approaches into clinical settings in which high-risk populations are currently engaged in care for common co-occurring conditions. Of high priority are those settings in which individuals receive ongoing care for HIV/AIDS, but which do not routinely deliver evidence-based drug and alcohol abuse screening, prevention, and treatment services. NIDA encourages hypothesis-driven research project applications to test implementation strategies for integrating evidence-based substance abuse services with HIV care in these settings.

Featured Events

10.14 Women's Cancer Research Center Speaker

"Identification of the Molecular and Cellular Basis for the Invasive Phenotype in Human Ductal Carcinoma in Situ," presented by Fariba Behbod, PharmD, PhD, University of Kansas.

Date: Monday, October 14, Noon to 1 p.m.
Location: Lurie Research Center — Baldwin
303 E. Superior St. (Chicago campus)
Contact: liz.dabulsks@northwestern.edu
More information

10.17 Feinberg Cardiovascular Research Institute Seminar Series

"Molecular Genetics of Sudden Cardiac Death in Early Life," presented by Alfred George, MD, Vanderbilt University

Date: Thursday, October 17, 8:30 to 9:30 a.m.
Location: Wieboldt Hall, Room 408
339 E. Chicago Ave. (Chicago campus)
Contact: k-lebeau@northwestern.edu
More information

10.21 18th Annual Eckenhoff Lecture & Smart Symposium

Date: Monday, October 21
Lecture 1 p.m., Poster Session 2 p.m., Roundtable 3 p.m.
Location: Lurie Research Center — Hughes
303 E. Superior St. (Chicago campus)
Contact: v-roman@northwestern.edu
More information

10.21 Center for Behavioral Intervention Technologies Seminar

Presented by Maria Czerwinski of Microsoft and Pablo Paredes of University of California—Berkeley.

Date: Monday, October 21, 3 to 4 p.m.
Location: 680 N. Lake Shore Drive — Stamler Rm. (Chicago campus)
Contact: JenniferBuchko@northwestern.edu
More information

More events

Event organizers are encouraged to submit calendar items on Plan-it Purple for consideration. Please contact the Research Office with further questions.