Northwestern University Feinberg School of Medicine
Faculty Profiles
Brian J Mitchell, PhD

Brian J Mitchell, PhD

Associate Professor of Cell and Molecular Biology

Focus of Work

Bio

Cilia Polarity.
The ability of ciliated epithelia to generate directed fluid flow is an important aspect of diverse developmental and physiological processes including proper respiratory function. To achieve directed flow, ciliated cells must generate 100-200 cilia that are polarized along a common axis both within and between cells. My lab is currently working towards understanding the molecular mechanisms for how cell polarity is coordinated as well as how individual cilia interpret the cell...[Read full text]
Cilia Polarity.
The ability of ciliated epithelia to generate directed fluid flow is an important aspect of diverse developmental and physiological processes including proper respiratory function. To achieve directed flow, ciliated cells must generate 100-200 cilia that are polarized along a common axis both within and between cells. My lab is currently working towards understanding the molecular mechanisms for how cell polarity is coordinated as well as how individual cilia interpret the cells polarity.
Centriole Duplication.
Centrioles are microtubule based structures with nine fold symmetry that are involved in both centrosome organization and aster formation during cell division. During the normal cell cycle centrioles duplicate once, generating a mother / daughter pair, and in most post-mitotic vertebrate cells the mother centriole then goes on to form the basal body of a sensory cilium. Abnormalities in the duplication of centrioles (and centrosomes) are prevalent in many cancers suggesting a link between centriole duplication and cancer progression. My laboratory is addressing this fundamental question in cell biology from a novel direction with the use of Xenopus motile ciliated cells. Ciliated cells are unique among vertebrate cells in that they naturally generate hundreds of centrioles therefore providing a great system for studying the regulation of centriole duplication. Understanding how nature has overcome the typically tight regulation of centriole duplication will lend insight into the molecular mechanisms of cancer progression.[Shorten text]

Keywords


Education and Certification

  • PhD: University of North Carolina, Neurobiology (2001)

Contact

312-503-9251
312-503-3388

Ward Building Room 8-090
303 E Chicago Avenue
Chicago IL 60611